Recently Chandra and Gulati established duality theorems for the nondifferentiable fractional programming problem maximize< [cTx – (xTBx)1/2 – α]/[eTx + (xTDx)1/2 + β] subject to Ax ≦ b, x≧. Here we treat the more general nonlinear fractional programming problem maximize [f(x) – (xT Bx)1/2]/[g(x) + (xT Dx)1/2] subject to h(x) ≦0, where f, g and h are differentiable, possibly nonlinear, functions. Necessary and sufficient conditions for optimality as well as appropriate duality theorems are established.
Unlangst stellten Chandra und Gulati Dualitatssatze fur das nicht-differenzierbare Quotientenoptimierungsproblem max {[cTx – (xTBx)1/2 – α]/[eTx + (xTDx)1/2 + β] | Ax ≦ b, x ≧ 0} auf. In dieser Arbeit untersuchen wir das allgemeinere nichtlineare Quotientenoptimierungsproblem max {[f(x) – (xTBx)1/2]/[g(x) + (xTDx)1/2] | h(x) ≦ 0}, wobei f, g und h differenzierbare, moglicherweise nichtlineare Funktionen sind. Es werden notwendige und hinreichende Optimalitatsbedingungen und geeignete Dualitatssatze aufgestellt.
[1]
E. Eisenberg.
Supports of a convex function
,
1962
.
[2]
Edmund Eisenberg.
A Gradient Inequality for a Class of Nondifferentiable Functions
,
1966,
Oper. Res..
[3]
S. Sinha.
An Extension of a Theorem on Supports of a Convex Function
,
1966
.
[4]
O. Mangasarian,et al.
The Fritz John Necessary Optimality Conditions in the Presence of Equality and Inequality Constraints
,
1967
.
[5]
Bertram Mond.
A class of nondifferentiable mathematical programming problems
,
1974
.
[6]
S. Aggarwal,et al.
Duality Theorems for Non-Linear Fractional Programs
,
1975
.
[7]
S. Schaible.
Fractional Programming. I, Duality
,
1976
.
[8]
On a constraint qualification in a nondifferentiable programming problem
,
1976
.
[9]
T. R. Gulati,et al.
A Duality Theorem for a Nondifferentiable Fractional Programming Problem
,
1976
.