Observable set, observability, interpolation inequality and spectral inequality for the heat equation in Rn

This paper studies connections among observable sets, the observability inequality, the H\"{o}lder-type interpolation inequality and the spectral inequality for the heat equation in $\mathbb R^n$. We present a characteristic of observable sets for the heat equation. In more detail, we show that a measurable set in $\mathbb{R}^n$ satisfies the observability inequality if and only if it is $\gamma$-thick at scale $L$ for some $\gamma>0$ and $L>0$.We also build up the equivalence among the above-mentioned three inequalities. More precisely, we obtain that if a measurable set $E\subset\mathbb{R}^n$ satisfies one of these inequalities, then it satisfies others. Finally, we get some weak observability inequalities and weak interpolation inequalities where observations are made over a ball.

[1]  Philippe Jaming,et al.  Nazarov's uncertainty principles in higher dimension , 2006, J. Approx. Theory.

[2]  C. Kenig,et al.  Hardy's uncertainty principle, convexity and Schrödinger evolutions , 2008, 0802.1608.

[3]  A. Soffer,et al.  Uncertainty principle, minimal escape velocities, and observability inequalities for Schrödinger Equations , 2017, American Journal of Mathematics.

[4]  Sergio Vessella,et al.  A continuous dependence result in the analytic continuation problem , 1999 .

[5]  S. Vessella,et al.  Doubling properties of caloric functions , 2006, math/0611462.

[6]  C. Diem A survey on uncertainty principles related to quadratic forms. , 2006 .

[7]  Lijuan Wang,et al.  Bang-bang property for time optimal control of semilinear heat equation , 2014 .

[8]  Michela Egidi,et al.  Sharp geometric condition for null-controllability of the heat equation on $$\mathbb {R}^d$$Rd and consistent estimates on the control cost , 2017, 1711.06088.

[9]  Can Zhang Quantitative unique continuation for the heat equation with Coulomb potentials , 2017, 1707.07744.

[10]  Enrique Zuazua,et al.  Null‐Controllability of a System of Linear Thermoelasticity , 1998 .

[11]  S. Ervedoza Control and Stabilization Properties for a Singular Heat Equation with an Inverse-Square Potential , 2008 .

[12]  Can Zhang,et al.  Observability Inequalities from Measurable Sets for Some Abstract Evolution Equations , 2017, SIAM J. Control. Optim..

[13]  V. È. Kacnel'son EQUIVALENT NORMS IN SPACES OF ENTIRE FUNCTIONS , 1973 .

[14]  E. Zuazua,et al.  Null Controllability in Unbounded Domains for the Semilinear Heat Equation with Nonlinearities Involving Gradient Terms , 2001 .

[15]  C. Kenig,et al.  Hardy Uncertainty Principle, Convexity and Parabolic Evolutions , 2015, 1506.05670.

[16]  J. Rousseau,et al.  Null-controllability of the Kolmogorov equation in the whole phase space , 2016 .

[17]  GengshengBB Wang,et al.  Observability and unique continuation inequalities for the Schrödinger equation , 2016, Journal of the European Mathematical Society.

[18]  N. Burq,et al.  Exponential decay for the damped wave equation in unbounded domains , 2014, 1408.6054.

[19]  GengshengBB Wang,et al.  Impulse output rapid stabilization for heat equations , 2016, 1611.10075.

[20]  B. Demange,et al.  A survey on uncertainty principles related to quadratic forms , 2005 .

[21]  Luc Miller Unique continuation estimates for sums of semiclassical eigenfunctions and null-controllability from cones , 2008 .

[22]  M. Reed Methods of Modern Mathematical Physics. I: Functional Analysis , 1972 .

[23]  E. Zuazua Exponential decay for the semilinear wave equation with localized damping , 1990 .

[24]  C. Laurent Internal control of the Schr\"odinger equation , 2013, 1307.2220.

[25]  A. Reznikov Sharp constants in the Paneyah–Logvinenko–Sereda theorem , 2010 .

[26]  C. Bardos,et al.  Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary , 1992 .

[27]  Luc Miller,et al.  On the null-controllability of the heat equation in unbounded domains , 2004, math/0404382.

[28]  V. Havin The Uncertainty Principle in Harmonic Analysis , 1994 .

[29]  Qi Lu,et al.  UNIQUE CONTINUATION FOR STOCHASTIC HEAT EQUATIONS , 2013, 1305.3888.

[30]  Luc Miller Unique continuation estimates for the Laplacian and the heat equation on non-compact manifolds , 2005 .

[31]  G. Folland,et al.  The uncertainty principle: A mathematical survey , 1997 .

[32]  Jeffrey Rauch,et al.  Exponential Decay of Solutions to Hyperbolic Equations in Bounded Domains , 1974 .

[33]  L. Escauriaza,et al.  Observation from measurable sets for parabolic analytic evolutions and applications , 2015 .

[34]  Enrique Zuazua,et al.  On the lack of null-controllability of the heat equation on the half-line , 2000 .

[35]  V. Barbu Exact null internal controllability for the heat equation on unbounded convex domains , 2014 .

[36]  Luis Escauriaza,et al.  Null-Control and Measurable Sets , 2011, ArXiv.

[37]  Emmanuel Tr'elat,et al.  Geometric control condition for the wave equation with a time-dependent observation domain , 2016, 1607.01527.

[38]  A lower bound on local energy of partial sum of eigenfunctions for Laplace-Beltrami operators , 2013 .

[39]  B. Simon,et al.  Schrödinger Semigroups , 2007 .

[40]  P. Martinez,et al.  NULL CONTROLLABILITY OF THE HEAT EQUATION IN UNBOUNDED DOMAINS BY A FINITE MEASURE CONTROL REGION , 2004 .

[41]  Oleg Kovrijkine Some results related to the Logvinenko-Sereda theorem , 2001 .

[42]  Unique continuation estimates for the Kolmogorov equation in the whole space , 2015, 1509.08292.

[43]  G. Lebeau,et al.  Contróle Exact De Léquation De La Chaleur , 1995 .

[44]  C. Kenig,et al.  Uniqueness properties of solutions to Schrödinger equations , 2011, 1110.4873.

[45]  Thomas Duyckaerts,et al.  Resolvent conditions for the control of parabolic equations , 2012 .

[46]  Kim Dang Phung,et al.  An observability estimate for parabolic equations from a measurable set in time and its applications , 2013 .

[47]  Oleg Yu. Imanuvilov,et al.  Controllability of Evolution equations , 1996 .

[48]  C. Laurent,et al.  Stabilization for the semilinear wave equation with geometric control condition , 2012, 1205.2459.

[49]  J. Apraiz,et al.  Observability Inequalities and Measurable Sets , 2012, 1202.4876.

[50]  Enrique Zuazua,et al.  Null controllability of the heat equation as singular limit of the exact controllability of dissipative wave equations , 2000 .