Measuring Non-Wood Forest Outputs in Numerical Forest Planning

This chapter reviews some alternatives for numerically measuring the amount of forest outputs other than timber or economic profit. A common feature of the presented methods is that they can be used in numerical optimisation, either as a component of the objective or penalty function, or as a constraint. The chapter classifies the approaches for dealing with non-wood forest outputs into three categories, namely economic approach, numerical optimisation, and multi-attribute utility theory. The reviewed models devised for non-wood outputs are applicable to the numerical optimisation and utility theoretic approaches. The chapter gives several examples of both empirical and expert models, which have been developed in Finland to predict scenic beauty, amount of forest berries and mushrooms, and ecological quality of a forested landscape. The emphasis, in the description of ecological measures, is on variables, which help to mitigate the fragmentation problem of forest landscapes. In addition to models and approaches, the chapter also provides planning examples that utilise the discussed numerical models for non-wood outputs.

[1]  M. Kurttila The spatial structure of forests in the optimization calculations of forest planning — a landscape ecological perspective , 2001 .

[2]  K. Gadow,et al.  Scenario planning for sustainable forest management. , 2000 .

[3]  Annika Kangas,et al.  Ekologiset mallit ja ekologisten riskien hallinta metsäsuunnittelussa , 1970 .

[4]  Pekka Korhonen,et al.  A Visual Interactive Method for Solving the Multiple-Criteria Problem , 1986 .

[5]  D. D. Reed,et al.  Spatial autocorrelation of individual tree characteristics in loblolly pine stands , 1985 .

[6]  E. Næsset Geographical information systems in long-term forest management and planning with special reference to preservation of biological diversity: a review , 1997 .

[7]  K. Öhman,et al.  The core area concept in forming contiguous areas for long-term forest planning , 1998 .

[8]  Jyrki Kangas,et al.  Operationalization of biological diversity as a decision objective in tactical forest planning , 1996 .

[9]  P. Leskinen,et al.  Regression Methods for Pairwise Comparison Data , 2001 .

[10]  T. Saaty,et al.  The Analytic Hierarchy Process , 1985 .

[11]  Jyrki Kangas,et al.  Integrating forest-level and compartment-level indices of species diversity with numerical forest planning. , 1997 .

[12]  L. Tyrväinen Monetary valuation of urban forest amenities in Finland. , 1999 .

[13]  Annika Kangas,et al.  HERO: Heuristic Optimisation for Multi-Criteria Forestry Decision Analysis , 2001 .

[14]  R. W. Hodgson,et al.  Rate of Travel Along an Interpretive Trail , 1980 .

[15]  S. Kurki,et al.  ESC-strategy for rational operationalization of forest biodiversity maintenance in Finland , 1998 .

[16]  D. Schmoldt,et al.  The Analytic Hierarchy Process in Natural Resource and Environmental Decision Making , 2001, Managing Forest Ecosystems.

[17]  E. Shafer,et al.  How to measure preferences for photographs of natural landscapes , 1977 .

[18]  Ritva Ihalainen,et al.  Yksityismetsänomistuksen rakenne 1990. , 1992 .

[19]  Tuula Nuutinen,et al.  Site‐specific constraints in integrated forest planning , 1996 .

[20]  Jari Kuuluvainen,et al.  Yksityismetsänomistuksen rakennemuutos ja metsien käyttö. , 1994 .

[21]  Jyrki Kangas,et al.  A method for estimating forest landowner's landscape preferences , 1993 .

[22]  Mikko Kurttila,et al.  The performance of alternative spatial objective types in forest planning calculations: a case for flying squirrel and moose , 2002 .

[23]  Timo Pukkala,et al.  Prediction of the amenity of a tree stand , 1988 .

[24]  Raymond J. Dezzani,et al.  Spatial autocorrelation of wildfire distribution in the Idyllwild Quadrangle, San Jacinto Mountain, California. , 1990 .

[25]  T. Pukkala,et al.  Modelling cowberry (Vaccinium vitis-idaea) and bilberry (Vaccinium myrtillus) yields from mineral soils and peatlands on the basis of visual field estimates , 2001 .

[26]  E. Næsset A spatial decision support system for long‐term forest management planning by means of linear programming and a geographical information system , 1997 .

[27]  K. McGarigal,et al.  FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. , 1995 .

[28]  Timo Pukkala,et al.  Methods to incorporate the amenity of landscape into forest management planning. , 1988 .

[29]  Jyrki Kangas,et al.  Integrating scenic and recreational amenities into numerical forest planning , 1995 .

[30]  Jyrki Kangas,et al.  A method for estimating the suitability function of wildlife habitat for forest planning on the basis of expertise , 1993 .

[31]  Timo Pukkala,et al.  Expert models for bilberry and cowberry yields in Finnish forests , 2002 .

[32]  Jyrki Kangas,et al.  Integrating spatial multi-criteria evaluation and expert knowledge for GIS-based habitat suitability modelling , 2001 .

[33]  Karin Öhman,et al.  Forest Planning with Consideration to Spatial Relationships , 2001 .

[34]  Jyrki Kangas,et al.  Improving the quality of landscape ecological forest planning by utilising advanced decision-support tools , 2000 .

[35]  T. Pukkala,et al.  Prediction models of landscape preferences at the forest stand level , 2001 .

[36]  T. L. Saaty A Scaling Method for Priorities in Hierarchical Structures , 1977 .

[37]  Jyrki Kangas,et al.  Ekologiseen asiantuntemukseen perustuvan numeerisen mallin tuottaminen metsäalueen biodiversiteetin arviointiin , 1970 .

[38]  Karin Öhman,et al.  Creating continuous areas of old forest in long- term forest planning , 2000 .

[39]  David R. Anderson,et al.  Mathematical Programming for Natural Resource Management , 1985 .

[40]  I. Ferguson Sustainable Forest Management , 1996, Encyclopedia of Animal Cognition and Behavior.

[41]  Pekka Leskinen,et al.  A Spatial Approach to Participatory Planning in Forestry Decision Making , 2002 .