Assessment and Comparison of Molecular Subtyping and Characterization Methods for Salmonella

The food industry is facing a major transition regarding methods for confirmation, characterization, and subtyping of Salmonella. Whole-genome sequencing (WGS) is rapidly becoming both the method of choice and the gold standard for Salmonella subtyping; however, routine use of WGS by the food industry is often not feasible due to cost constraints or the need for rapid results. To facilitate selection of subtyping methods by the food industry, we present: (i) a comparison between classical serotyping and selected widely used molecular-based subtyping methods including pulsed-field gel electrophoresis, multilocus sequence typing, and WGS (including WGS-based serovar prediction) and (ii) a scoring system to evaluate and compare Salmonella subtyping assays. This literature-based assessment supports the superior discriminatory power of WGS for source tracking and root cause elimination in food safety incident; however, circumstances in which use of other subtyping methods may be warranted were also identified. This review provides practical guidance for the food industry and presents a starting point for further comparative evaluation of Salmonella characterization and subtyping methods.

[1]  Nabil-Fareed Alikhan,et al.  A genomic overview of the population structure of Salmonella , 2018, PLoS genetics.

[2]  Peter Rabold,et al.  Multiple-locus variable-number tandem repeat analysis for subtyping of Salmonella enterica subsp. enterica serovar Enteritidis. , 2009, International journal of medical microbiology : IJMM.

[3]  J. D. Greig,et al.  Analysis of foodborne outbreak data reported internationally for source attribution. , 2009, International journal of food microbiology.

[4]  Zhemin Zhou,et al.  Multilocus Sequence Typing as a Replacement for Serotyping in Salmonella enterica , 2012, PLoS pathogens.

[5]  Thibaut Jombart,et al.  Phylogenetic structure of European Salmonella Enteritidis outbreak correlates with national and international egg distribution network , 2016, Microbial genomics.

[6]  B. White,et al.  Comparison of pulsed field gel electrophoresis and repetitive sequence polymerase chain reaction as genotyping methods for detection of genetic diversity and inferring transmission of Salmonella. , 2004, Veterinary microbiology.

[7]  J. Concepción-Acevedo,et al.  Laboratory Investigation of Salmonella enterica serovar Poona Outbreak in California: Comparison of Pulsed-Field Gel Electrophoresis (PFGE) and Whole Genome Sequencing (WGS) Results , 2016, PLoS currents.

[8]  N. Loman,et al.  Twenty years of bacterial genome sequencing , 2015, Nature Reviews Microbiology.

[9]  S. Ricke Insights and challenges of Salmonella infection of laying hens , 2017 .

[10]  M. Torpdahl,et al.  Harmonization of the multiple‐locus variable‐number tandem repeat analysis method between Denmark and Norway for typing Salmonella Typhimurium isolates and closer examination of the VNTR loci , 2007, Journal of applied microbiology.

[11]  F. Tenover,et al.  Molecular microbiology: diagnostic principles and practice. , 2011 .

[12]  Alexandre P. Francisco,et al.  Global optimal eBURST analysis of multilocus typing data using a graphic matroid approach , 2009, BMC Bioinformatics.

[13]  F. Hartmann,et al.  Utilization of both phenotypic and molecular analyses to investigate an outbreak of multidrug-resistant Salmonella anatum in horses. , 1997, Canadian journal of veterinary research = Revue canadienne de recherche veterinaire.

[14]  I. Ross,et al.  Discrimination within Phenotypically Closely Related Definitive Types of Salmonella enterica Serovar Typhimurium by the Multiple Amplification of Phage Locus Typing Technique , 2005, Journal of Clinical Microbiology.

[15]  John Chapman,et al.  The use of next generation sequencing for improving food safety: Translation into practice , 2018, Food microbiology.

[16]  M. Maiden,et al.  Multilocus sequence typing. , 2009, Methods in molecular biology.

[17]  Hans-Peter Klenk,et al.  Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs , 2010, Standards in genomic sciences.

[18]  F. Aarestrup,et al.  WHO global salm-surv external quality assurance system (EQAS): an important step toward improving the quality of Salmonella serotyping and antimicrobial susceptibility testing worldwide. , 2002, Microbial drug resistance.

[19]  Jennifer A. Doudna,et al.  Structures of the CRISPR genome integration complex , 2017, Science.

[20]  S. Ricke,et al.  Molecular‐based identification and detection of Salmonella in food production systems: current perspectives , 2018, Journal of applied microbiology.

[21]  R. Goering,et al.  Molecular Epidemiology of Nosocomial Infection: Analysis of Chromosomal Restriction Fragment Patterns by Pulsed-Field Gel Electrophoresis , 1993, Infection Control & Hospital Epidemiology.

[22]  A. Pavic,et al.  Classification of Salmonella enterica serotypes from Australian poultry using repetitive sequence‐based PCR , 2012, Journal of applied microbiology.

[23]  W. van Pelt,et al.  New paradigms for Salmonella source attribution based on microbial subtyping. , 2017, Food microbiology.

[24]  B. Guerra,et al.  Molecular characterisation of emergent multiresistant Salmonella enterica serotype [4,5,12:i:-] organisms causing human salmonellosis. , 2000, FEMS microbiology letters.

[25]  Arthur W. Pightling,et al.  Choice of Reference Sequence and Assembler for Alignment of Listeria monocytogenes Short-Read Sequence Data Greatly Influences Rates of Error in SNP Analyses , 2014, PloS one.

[26]  K. Hopkins,et al.  Stability of Multiple-Locus Variable-Number Tandem Repeats in Salmonella enterica Serovar Typhimurium , 2007, Journal of Clinical Microbiology.

[27]  M. Khaitsa,et al.  Antimicrobial drug resistance and molecular characterization of Salmonella isolated from domestic animals, humans, and meat products. , 2009, Foodborne pathogens and disease.

[28]  N. Binsztein,et al.  Web-based Surveillance and Global Salmonella Distribution, 2000–2002 , 2006, Emerging infectious diseases.

[29]  D. Schwartz,et al.  Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis , 1984, Cell.

[30]  W. Rabsch,et al.  Identification of DNA gyrase A mutations in ciprofloxacin-resistant isolates of Salmonella typhimurium from men and cattle in Germany. , 1995, Microbial drug resistance.

[31]  E. Gilson,et al.  Palindromic unit highly repetitive DNA sequences exhibit species specificity within Enterobacteriaceae. , 1990, Research in microbiology.

[32]  N. Shariat,et al.  CRISPRs: Molecular Signatures Used for Pathogen Subtyping , 2013, Applied and Environmental Microbiology.

[33]  B. Seal,et al.  Predicting Salmonella enterica serotypes by repetitive sequence-based PCR. , 2009, Journal of microbiological methods.

[34]  A. Siitonen,et al.  Characterization of Salmonella Typhimurium isolates from domestically acquired infections in Finland by phage typing, antimicrobial susceptibility testing, PFGE and MLVA , 2015, BMC Microbiology.

[35]  Leen Baert,et al.  A Validation Approach of an End-to-End Whole Genome Sequencing Workflow for Source Tracking of Listeria monocytogenes and Salmonella enterica , 2018, Front. Microbiol..

[36]  M. Wiedmann,et al.  Salmonella enterica Serotype 4,5,12:i:−, an Emerging Salmonella Serotype That Represents Multiple Distinct Clones , 2009, Journal of Clinical Microbiology.

[37]  Matthias Reumann,et al.  WGS Analysis and Interpretation in Clinical and Public Health Microbiology Laboratories: What Are the Requirements and How Do Existing Tools Compare? , 2014, Pathogens.

[38]  Whole genome sequencing for foodborne disease surveillance , 2018 .

[39]  Bjørn‐Arne Lindstedt,et al.  Multiple‐locus variable number tandem repeats analysis for genetic fingerprinting of pathogenic bacteria , 2005, Electrophoresis.

[40]  Philippe Horvath,et al.  CRISPR: new horizons in phage resistance and strain identification. , 2012, Annual review of food science and technology.

[41]  Even Heir,et al.  DNA Fingerprinting of Salmonella enterica subsp. enterica Serovar Typhimurium with Emphasis on Phage Type DT104 Based on Variable Number of Tandem Repeat Loci , 2003, Journal of Clinical Microbiology.

[42]  Gary Van Domselaar,et al.  A Comparative Analysis of the Lyve-SET Phylogenomics Pipeline for Genomic Epidemiology of Foodborne Pathogens , 2017, Front. Microbiol..

[43]  L. Florea,et al.  Characterization of Salmonella enterica Subspecies I Genovars by Use of Microarrays , 2004, Journal of bacteriology.

[44]  Eduardo P C Rocha,et al.  Whole genome-based population biology and epidemiological surveillance of Listeria monocytogenes , 2016, Nature Microbiology.

[45]  John H. E. Nash,et al.  Evaluation of Molecular Methods for Identification of Salmonella Serovars , 2016, Journal of Clinical Microbiology.

[46]  M. Wiedmann,et al.  A Whole-Genome Single Nucleotide Polymorphism-Based Approach To Trace and Identify Outbreaks Linked to a Common Salmonella enterica subsp. enterica Serovar Montevideo Pulsed-Field Gel Electrophoresis Type , 2011, Applied and Environmental Microbiology.

[47]  L. Stubbs Pulsed Field Gel Electrophoresis (PFGE) , 2001 .

[48]  Seonghan Kim,et al.  Multiplex PCR-Based Method for Identification of Common Clinical Serotypes of Salmonella enterica subsp. enterica , 2006, Journal of Clinical Microbiology.

[49]  Stephen B. Gaul,et al.  Use of Pulsed-Field Gel Electrophoresis of Conserved XbaI Fragments for Identification of Swine Salmonella Serotypes , 2006, Journal of Clinical Microbiology.

[50]  Errol Strain,et al.  High resolution clustering of Salmonella enterica serovar Montevideo strains using a next-generation sequencing approach , 2012, BMC Genomics.

[51]  N. Dumas,et al.  Implementation of Salmonella serotype determination using pulsed-field gel electrophoresis in a state public health laboratory. , 2016, Diagnostic microbiology and infectious disease.

[52]  M. Wiedmann,et al.  Molecular methods for serovar determination of Salmonella , 2015, Critical reviews in microbiology.

[53]  W. Rabsch,et al.  Clonal dissemination of Salmonella enterica serovar Infantis in Germany. , 2012, Foodborne pathogens and disease.

[54]  Pierre Wattiau,et al.  Methodologies for Salmonella enterica subsp. enterica Subtyping: Gold Standards and Alternatives , 2011, Applied and Environmental Microbiology.

[55]  K. Marchal,et al.  MLVA as a Tool for Public Health Surveillance of Human Salmonella Typhimurium: Prospective Study in Belgium and Evaluation of MLVA Loci Stability , 2013, PloS one.

[56]  Arrow Buttons Frequently asked questions , 2009 .

[57]  Shaohua Zhao,et al.  Simultaneous Analysis of Multiple Enzymes Increases Accuracy of Pulsed-Field Gel Electrophoresis in Assigning Genetic Relationships among Homogeneous Salmonella Strains , 2010, Journal of Clinical Microbiology.

[58]  M. Wiedmann,et al.  Comparative genomics of the bacterial genus Listeria: Genome evolution is characterized by limited gene acquisition and limited gene loss , 2010, BMC Genomics.

[59]  D. Hartl,et al.  DNA Fingerprinting , 2019, Definitions.

[60]  W. Rabsch,et al.  Evolution and Population Structure of Salmonella enterica Serovar Newport , 2010, Journal of Bacteriology.

[61]  J. Wells,et al.  The use of plasmid profiles and nucleic acid probes in epidemiologic investigations of foodborne, diarrheal diseases. , 1991, International journal of food microbiology.

[62]  M. Allard,et al.  Multilocus sequence typing of Salmonella Typhimurium reveals the presence of the highly invasive ST313 in Brazil. , 2017, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[63]  F. Weill,et al.  Supplement 2003-2007 (No. 47) to the White-Kauffmann-Le Minor scheme. , 2010, Research in microbiology.

[64]  John Walker,et al.  A highly conserved repeated DNA element located in the chromosome of Streptococcus pneumoniae , 1992, Nucleic Acids Res..

[65]  C. Doetkott,et al.  Prevalence and molecular profiles of Salmonella collected at a commercial turkey processing plant. , 2006, Journal of food protection.

[66]  M. Wiedmann,et al.  The Prevalence of Multidrug Resistance Is Higher among Bovine than Human Salmonellaenterica Serotype Newport, Typhimurium, and 4,5,12:i:− Isolates in the United States but Differs by Serotype and Geographic Region , 2010, Applied and Environmental Microbiology.

[67]  Y. Li,et al.  A rapid method to identify Salmonella enterica serovar Gallinarum biovar Pullorum using a specific target gene ipaJ , 2018, Avian pathology : journal of the W.V.P.A.

[68]  B. Malorny,et al.  Different mutations in the oafA gene lead to loss of O5‐antigen expression in Salmonella enterica serovar Typhimurium , 2011, Journal of applied microbiology.

[69]  Z. Pan,et al.  Identification and Discrimination of Salmonella enterica Serovar Gallinarum Biovars Pullorum and Gallinarum Based on a One-Step Multiplex PCR Assay , 2018, Front. Microbiol..

[70]  Rajesh Nayak,et al.  Molecular typing methodologies for microbial source tracking and epidemiological investigations of Gram-negative bacterial foodborne pathogens. , 2009, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[71]  Chijioke A. Nsofor Pulsed-Field Gel Electrophoresis (PFGE): Principles and Applications in Molecular Epidemiology: A Review , 2016 .

[72]  P. Sharp,et al.  ERIC sequences: a novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimurium and other enterobacteria. , 1991, Molecular microbiology.

[73]  E Feil,et al.  Guidelines for the validation and application of typing methods for use in bacterial epidemiology. , 2007, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[74]  K. Thong,et al.  Overview of Molecular Typing Tools for The Characterization of Salmonella enterica in Malaysia. , 2015, Biomedical and environmental sciences : BES.

[75]  C. Nadon,et al.  Comparison of advanced whole genome sequence-based methods to distinguish strains of Salmonella enterica serovar Heidelberg involved in foodborne outbreaks in Québec. , 2018, Food microbiology.

[76]  R. Barrangou,et al.  Subtyping of Salmonella enterica Serovar Newport Outbreak Isolates by CRISPR-MVLST and Determination of the Relationship between CRISPR-MVLST and PFGE Results , 2013, Journal of Clinical Microbiology.

[77]  Armando J. Pinho,et al.  Genome analysis with inter-nucleotide distances , 2009, Bioinform..

[78]  Mark M. Tanaka,et al.  Delineating Community Outbreaks of Salmonella enterica Serovar Typhimurium by Use of Whole-Genome Sequencing: Insights into Genomic Variability within an Outbreak , 2015, Journal of Clinical Microbiology.

[79]  S. Pillai,et al.  Incidence, sources, and control of food-borne Salmonella spp. in poultry feeds , 2004 .

[80]  F. Weill,et al.  WHO Collaborating Centre for Reference and Research on Salmonella ANTIGENIC FORMULAE OF THE SALMONELLA SEROVARS , 2007 .

[81]  Rasko Leinonen,et al.  The sequence read archive: explosive growth of sequencing data , 2011, Nucleic Acids Res..

[82]  S. Ricke,et al.  Food safety hazards associated with ready-to-bake cookie dough and its ingredients , 2017 .

[83]  M. Najafi,et al.  Comparison of multiple-locus variable-number tandem-repeat analysis with pulsed-field gel electrophoresis typing of carbapenemases producing Acinetobacter baumannii isolated from burn patients. , 2016, Burns : journal of the International Society for Burn Injuries.

[84]  M. Zervos,et al.  The application of molecular techniques to the study of hospital infection. , 2006, Archives of pathology & laboratory medicine.

[85]  Mark Achtman,et al.  Salmonella typhi, the causative agent of typhoid fever, is approximately 50,000 years old. , 2002, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[86]  D. Boxrud Advances in subtyping methods of foodborne disease pathogens. , 2010, Current opinion in biotechnology.

[87]  Michael J. Palumbo,et al.  Characterization of Foodborne Outbreaks of Salmonella enterica Serovar Enteritidis with Whole-Genome Sequencing Single Nucleotide Polymorphism-Based Analysis for Surveillance and Outbreak Detection , 2015, Journal of Clinical Microbiology.

[88]  M. Cormican,et al.  Whole genome sequencing provides an unambiguous link between Salmonella Dublin outbreak strain and a historical isolate , 2015, Epidemiology and Infection.

[89]  L. Graves,et al.  Establishment of a Universal Size Standard Strain for Use with the PulseNet Standardized Pulsed-Field Gel Electrophoresis Protocols: Converting the National Databases to the New Size Standard , 2005, Journal of Clinical Microbiology.

[90]  Yanlong Yin,et al.  Salmonella Serotype Determination Utilizing High-Throughput Genome Sequencing Data , 2015, Journal of Clinical Microbiology.

[91]  D. Sandvang,et al.  Genotypic characterization of Salmonella by multilocus sequence typing, pulsed-field gel electrophoresis and amplified fragment length polymorphism. , 2005, Journal of microbiological methods.

[92]  R. Barrangou,et al.  CRISPR-Based Typing and Next-Generation Tracking Technologies. , 2016, Annual review of food science and technology.

[93]  J. Koeck,et al.  Multilocus variable number tandem repeat analysis for Salmonella enterica subspecies , 2011, European Journal of Clinical Microbiology & Infectious Diseases.

[94]  S. Ricke,et al.  Environmental Dissemination of Foodborne Salmonella in Preharvest Poultry Production: Reservoirs, Critical Factors, and Research Strategies , 2008 .

[95]  R. Barrangou,et al.  The combination of CRISPR-MVLST and PFGE provides increased discriminatory power for differentiating human clinical isolates of Salmonella enterica subsp. enterica serovar Enteritidis. , 2013, Food microbiology.

[96]  Steven C Ricke,et al.  Salmonellosis outbreaks in the United States due to fresh produce: sources and potential intervention measures. , 2009, Foodborne pathogens and disease.

[97]  R. Sen,et al.  Random mutagenesis using a mutator strain. , 2010, Methods in molecular biology.

[98]  Kai Zhou,et al.  Application of next generation sequencing in clinical microbiology and infection prevention. , 2017, Journal of biotechnology.

[99]  E. Nielsen,et al.  Development of a new nomenclature for Salmonella typhimurium multilocus variable number of tandem repeats analysis (MLVA). , 2009, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[100]  L. Schouls,et al.  Use of multilocus variable-number tandem repeat analysis (MLVA) in eight European countries, 2012. , 2013, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[101]  S. Pillai,et al.  Bioaerosols from municipal and animal wastes: background and contemporary issues. , 2002, Canadian journal of microbiology.

[102]  Nabil-Fareed Alikhan,et al.  Comparative analysis of core genome MLST and SNP typing within a European Salmonella serovar Enteritidis outbreak , 2018, International journal of food microbiology.

[103]  Shaohua Zhao,et al.  Enhanced Subtyping Scheme for Salmonella Enteritidis , 2007, Emerging infectious diseases.

[104]  Marcus J. Claesson,et al.  Comparing Apples and Oranges?: Next Generation Sequencing and Its Impact on Microbiome Analysis , 2016, PloS one.

[105]  Martin Wiedmann,et al.  Comparison of Typing Methods with a New Procedure Based on Sequence Characterization for Salmonella Serovar Prediction , 2013, Journal of Clinical Microbiology.

[106]  T Jombart,et al.  Prospective use of whole genome sequencing (WGS) detected a multi-country outbreak of Salmonella Enteritidis , 2016, Epidemiology and Infection.

[107]  D. P. Rodrigues,et al.  Genotypic diversity, pathogenic potential and the resistance profile of Salmonella Typhimurium strains isolated from humans and food from 1983 to 2013 in Brazil. , 2015, Journal of medical microbiology.

[108]  R. Goering,et al.  Molecular Epidemiology of Nosocomial Infection: Analysis of Chromosomal Restriction Fragment Patterns by Pulsed-Field Gel Electrophoresis , 1993, Infection Control & Hospital Epidemiology.

[109]  M. Torpdahl,et al.  Development and comparison of a generic multiple‐locus variable‐number tandem repeat analysis with pulsed‐field gel electrophoresis for typing of Salmonella enterica subsp. enterica , 2015, Journal of applied microbiology.

[110]  Ruth Timme,et al.  Practical Value of Food Pathogen Traceability through Building a Whole-Genome Sequencing Network and Database , 2016, Journal of Clinical Microbiology.

[111]  M. Gilmour,et al.  Limited genetic diversity in Salmonella enterica Serovar Enteritidis PT13 , 2007, BMC Microbiology.

[112]  Eduardo N. Taboada,et al.  Comprehensive assessment of the quality of Salmonella whole genome sequence data available in public sequence databases using the Salmonella in silico Typing Resource (SISTR) , 2018, Microbial genomics.

[113]  F. Weill,et al.  CRISPR Typing and Subtyping for Improved Laboratory Surveillance of Salmonella Infections , 2012, PloS one.

[114]  E. Threlfall,et al.  The identification, typing and fingerprinting of Salmonella: laboratory aspects and epidemiological applications. , 1990, The Journal of applied bacteriology.

[115]  Eduardo N. Taboada,et al.  The Salmonella In Silico Typing Resource (SISTR): An Open Web-Accessible Tool for Rapidly Typing and Subtyping Draft Salmonella Genome Assemblies , 2016, PloS one.

[116]  I. Ross,et al.  A comparison of three molecular typing methods for the discrimination of Salmonella enterica serovar Infantis. , 2008, FEMS immunology and medical microbiology.

[117]  F. Weill,et al.  One-Step Identification of Five Prominent Chicken Salmonella Serovars and Biotypes , 2015, Journal of Clinical Microbiology.

[118]  Justin Zobel,et al.  SRST2: Rapid genomic surveillance for public health and hospital microbiology labs , 2014, bioRxiv.

[119]  A. Friedrich,et al.  Overview of molecular typing methods for outbreak detection and epidemiological surveillance. , 2013, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[120]  Yi Chen,et al.  Implementation of Nationwide Real-time Whole-genome Sequencing to Enhance Listeriosis Outbreak Detection and Investigation. , 2016, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[121]  Padmini Ramachandran,et al.  Genomics of foodborne pathogens for microbial food safety. , 2018, Current opinion in biotechnology.

[122]  Steen Ethelberg,et al.  Whole-genome Sequencing Used to Investigate a Nationwide Outbreak of Listeriosis Caused by Ready-to-eat Delicatessen Meat, Denmark, 2014. , 2016, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[123]  I. Van Walle,et al.  PulseNet International: Vision for the implementation of whole genome sequencing (WGS) for global food-borne disease surveillance , 2017, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[124]  M. Wiedmann,et al.  DNA Sequence-Based Subtyping and Evolutionary Analysis of Selected Salmonella enterica Serotypes , 2005, Journal of Clinical Microbiology.

[125]  P. Fields,et al.  Sequence Analysis of the rfb Loci, Encoding Proteins Involved in the Biosynthesis of the Salmonella enterica O17 and O18 Antigens: Serogroup-Specific Identification by PCR , 2006, Applied and Environmental Microbiology.

[126]  Rodolphe Barrangou,et al.  Novel Virulence Gene and Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) Multilocus Sequence Typing Scheme for Subtyping of the Major Serovars of Salmonella enterica subsp. enterica , 2011, Applied and Environmental Microbiology.

[127]  R. Holley,et al.  Factors influencing the microbial safety of fresh produce: a review. , 2012, Food microbiology.

[128]  L. Dijkshoorn,et al.  New approaches for the generation and analysis of microbial typing data , 2000 .

[129]  C. Logue,et al.  Multilocus Sequence Typing Lacks the Discriminatory Ability of Pulsed-Field Gel Electrophoresis for Typing Salmonella enterica Serovar Typhimurium , 2005, Journal of Clinical Microbiology.

[130]  S. Brisse,et al.  MLVA-NET--a standardised web database for bacterial genotyping and surveillance. , 2008, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[131]  Federica Barrucci,et al.  Salmonella source attribution based on microbial subtyping. , 2013, International journal of food microbiology.

[132]  E. Lingohr,et al.  Multi-laboratory evaluation of the rapid genoserotyping array (SGSA) for the identification of Salmonella serovars. , 2014, Diagnostic microbiology and infectious disease.

[133]  Z. Pan,et al.  A new PCR assay based on the new gene-SPUL_2693 for rapid detection of Salmonella enterica subsp. enterica serovar Gallinarum biovars Gallinarum and Pullorum , 2018, Poultry science.

[134]  J. Sarthou,et al.  MLVA polymorphism of Salmonella enterica subspecies isolated from humans, animals, and food in Cambodia , 2011, BMC Research Notes.

[135]  D. Engelthaler,et al.  Comparative Analysis of Subtyping Methods against a Whole-Genome-Sequencing Standard for Salmonella enterica Serotype Enteritidis , 2014, Journal of Clinical Microbiology.

[136]  M. Torpdahl,et al.  Proof-of-concept study for successful inter-laboratory comparison of MLVA results. , 2013, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[137]  P. McDermott,et al.  Comparison of Subtyping Methods for Differentiating Salmonella enterica Serovar Typhimurium Isolates Obtained from Food Animal Sources , 2006, Journal of Clinical Microbiology.

[138]  Deog-Yong Lee,et al.  Modified Method of Multilocus Sequence Typing (MLST) for Serotyping in Salmonella Species , 2015 .

[139]  M. Bonten,et al.  Comparison of multiple-locus variable-number tandem repeat analysis and pulsed-field gel electrophoresis in a setting of polyclonal endemicity of vancomycin-resistant Enterococcus faecium. , 2008, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[140]  J. Lupski,et al.  Microbial DNA Typing by Automated Repetitive-Sequence-Based PCR , 2005, Journal of Clinical Microbiology.

[141]  B. Dera-Tomaszewska Salmonella serovars isolated for the first time in Poland, 1995–2007 , 2012, International journal of occupational medicine and environmental health.

[142]  Z. Iqbal,et al.  Rapid Whole-Genome Sequencing for Surveillance of Salmonella enterica Serovar Enteritidis , 2014, Emerging infectious diseases.

[143]  X. Didelot,et al.  Reconstructing the Ancestral Relationships Between Bacterial Pathogen Genomes. , 2017, Methods in molecular biology.

[144]  H. Harbottle,et al.  Comparison of Multilocus Sequence Typing, Pulsed-Field Gel Electrophoresis, and Antimicrobial Susceptibility Typing for Characterization of Salmonella enterica Serotype Newport Isolates , 2006, Journal of Clinical Microbiology.

[145]  E. J. Threlfall,et al.  Comparison of a semi-automated rep-PCR system and multilocus sequence typing for differentiation of Salmonella enterica isolates. , 2010, Journal of microbiological methods.

[146]  T. Cebula,et al.  Comparative Genomics of 28 Salmonella enterica Isolates: Evidence for CRISPR-Mediated Adaptive Sublineage Evolution , 2011, Journal of bacteriology.

[147]  E. Nielsen,et al.  Tandem Repeat Analysis for Surveillance of Human Salmonella Typhimurium Infections , 2007, Emerging infectious diseases.

[148]  Yi Chen,et al.  Whole Genome and Core Genome Multilocus Sequence Typing and Single Nucleotide Polymorphism Analyses of Listeria monocytogenes Isolates Associated with an Outbreak Linked to Cheese, United States, 2013 , 2017, Applied and Environmental Microbiology.

[149]  Heng Li Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM , 2013, 1303.3997.

[150]  Alejandro Amézquita,et al.  Next generation microbiological risk assessment: opportunities of whole genome sequencing (WGS) for foodborne pathogen surveillance, source tracking and risk assessment. , 2017, International journal of food microbiology.

[151]  M. Wiedmann,et al.  Multilocus Sequence Typing Supports the Hypothesis that Cow- and Human-Associated Salmonella Isolates Represent Distinct and Overlapping Populations , 2006, Applied and Environmental Microbiology.

[152]  P. Sharp,et al.  ERIC sequences: a novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimurium and other enterobacteria , 1991, Molecular microbiology.

[153]  J. Besser,et al.  Comparison of Multiple-Locus Variable-Number Tandem Repeat Analysis, Pulsed-Field Gel Electrophoresis, and Phage Typing for Subtype Analysis of Salmonella enterica Serotype Enteritidis , 2006, Journal of Clinical Microbiology.

[154]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[155]  Martin Wiedmann,et al.  Assessment criteria and approaches for rapid detection methods to be used in the food industry. , 2014, Journal of food protection.

[156]  K. Thong,et al.  Genotypic and phenotypic differentiation of Salmonella enterica serovar Paratyphi B in Malaysia. , 2011, The Southeast Asian journal of tropical medicine and public health.

[157]  Peter Gerner-Smidt,et al.  Recent developments and future prospects in subtyping of foodborne bacterial pathogens. , 2007, Future microbiology.

[158]  R. Parreñas,et al.  Sequencing and Comparative Analysis of Flagellin Genes fliC, fljB, and flpA from Salmonella , 2004, Journal of Clinical Microbiology.

[159]  T. Dallman,et al.  A multi-country Salmonella Enteritidis phage type 14b outbreak associated with eggs from a German producer: 'near real-time' application of whole genome sequencing and food chain investigations, United Kingdom, May to September 2014. , 2015, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[160]  P. Fields,et al.  Molecular Determination of H Antigens of Salmonella by Use of a Microsphere-Based Liquid Array , 2010, Journal of Clinical Microbiology.

[161]  Weizhong Zhao,et al.  Data mining tools for Salmonella characterization: application to gel-based fingerprinting analysis , 2013, BMC Bioinformatics.

[162]  K. Thong,et al.  Macrorestriction analysis and antimicrobial susceptibility profiling of Salmonella enterica at a University Teaching Hospital, Kuala Lumpur. , 2010, Japanese journal of infectious diseases.

[163]  J. Wain,et al.  Standardisation of multilocus variable-number tandem-repeat analysis (MLVA) for subtyping of Salmonella enterica serovar Enteritidis. , 2011, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[164]  R. Barrangou,et al.  Antibiotic Resistance in Salmonella enterica Serovar Typhimurium Associates with CRISPR Sequence Type , 2013, Antimicrobial Agents and Chemotherapy.

[165]  M. Wiedmann,et al.  Pulsed-field gel electrophoresis diversity of human and bovine clinical Salmonella isolates. , 2010, Foodborne pathogens and disease.

[166]  C. Gyles,et al.  Methods for Genotyping Verotoxin‐Producing Escherichia coli , 2010, Zoonoses and public health.

[167]  Yan Luo,et al.  CFSAN SNP Pipeline: an automated method for constructing SNP matrices from next-generation sequence data , 2015, PeerJ Comput. Sci..

[168]  Lisa H. Orfe,et al.  Impact of compounding error on strategies for subtyping pathogenic bacteria. , 2008, Foodborne pathogens and disease.

[169]  R. Kaas,et al.  Evaluation of Whole Genome Sequencing for Outbreak Detection of Salmonella enterica , 2014, PloS one.

[170]  L. Kostrikis,et al.  Molecular beacon-based real-time PCR detection of primary isolates of Salmonella Typhimurium and Salmonella Enteritidis in environmental and clinical samples , 2009, BMC Microbiology.

[171]  N. Binsztein,et al.  Web-based surveillance and global Salmonella distribution, 2000-2002. , 2006 .

[172]  J. Bray,et al.  MLST revisited: the gene-by-gene approach to bacterial genomics , 2013, Nature Reviews Microbiology.

[173]  C. Conte‐Junior,et al.  Phenotypic and Genotypic Eligible Methods for Salmonella Typhimurium Source Tracking , 2017, Front. Microbiol..

[174]  Didier Raoult,et al.  Bacterial strain typing in the genomic era. , 2009, FEMS microbiology reviews.

[175]  Wen Zou,et al.  Evaluation of Pulsed-Field Gel Electrophoresis Profiles for Identification of Salmonella Serotypes , 2010, Journal of Clinical Microbiology.

[176]  Peter S Evans,et al.  Tracing Origins of the Salmonella Bareilly Strain Causing a Food-borne Outbreak in the United States. , 2016, The Journal of infectious diseases.

[177]  R. Evans European Centre for Disease Prevention and Control. , 2014, Nursing standard (Royal College of Nursing (Great Britain) : 1987).

[178]  Joakim,et al.  Expert Opinion on the introduction of next-generation typing methods for food- and waterborne diseases in the EU and EEA , 2015 .

[179]  Hugh Rand,et al.  Interpreting Whole-Genome Sequence Analyses of Foodborne Bacteria for Regulatory Applications and Outbreak Investigations , 2018, Front. Microbiol..

[180]  A. Ricci,et al.  Comparison between Salmonella enterica Serotype Enteritidis Genotyping Methods and Phage Type , 2015, Journal of Clinical Microbiology.

[181]  L. Schouls,et al.  Multiple-Locus Variable Number Tandem Repeat Analysis of Staphylococcus Aureus: Comparison with Pulsed-Field Gel Electrophoresis and spa-Typing , 2009, PloS one.

[182]  Claire Jenkins,et al.  Identification of Salmonella for public health surveillance using whole genome sequencing , 2016, PeerJ.

[183]  R. Barrangou,et al.  CRISPR-MVLST subtyping of Salmonella enterica subsp. enterica serovars Typhimurium and Heidelberg and application in identifying outbreak isolates , 2013, BMC Microbiology.

[184]  Carole Feurer,et al.  Pulsed-field gel electrophoresis subtyping database for foodborne Salmonella enterica serotype discrimination. , 2007, Foodborne pathogens and disease.