Koszul modules with vanishing resonance in algebraic geometry

We discuss various applications of a uniform vanishing result for the graded components of the finite length Koszul module associated to a subspace K ⊆ ∧2 V , where V is a vector space. Previously Koszul modules of finite length have been used to give a proof of Green’s Conjecture on syzygies of generic canonical curves. We now give applications to effective stabilization of cohomology of thickenings of algebraic varieties, divisors on moduli spaces of curves, enumerative geometry of curves on K3 surfaces and to skew-symmetric degeneracy loci. We also show that the stability of sufficiently positive rank 2 vector bundles on curves is governed by resonance.

[1]  R. Lazarsfeld,et al.  Derivative complex, BGG correspondence, and numerical inequalities for compact Kähler manifolds , 2009, 0907.0651.

[2]  E. Sernesi,et al.  Mukai's program for curves on a K3 surface , 2013, 1309.0496.

[3]  J. Weyman,et al.  Topological invariants of groups and Koszul modules , 2018, Duke Mathematical Journal.

[4]  Alexander I. Suciu,et al.  Topology and geometry of cohomology jump loci , 2009, 0902.1250.

[5]  J. Weyman Cohomology of Vector Bundles and Syzygies , 2003 .

[6]  R. Hartshorne Ample vector bundles , 1966 .

[7]  Richárd Rimányi,et al.  Quadric ramk loci on moduli of curves and K3 surfaces , 2017, 1707.00756.

[8]  P. Jahnke,et al.  Fano threefolds with sections in Ω1V (1) , 2007 .

[9]  D. Eisenbud,et al.  The Kodaira dimension of the moduli space of curves of genus ≧23 , 1987 .

[10]  A. Dimca,et al.  Arithmetic group symmetry and finiteness properties of Torelli groups , 2010, 1002.0673.

[11]  R. Lazarsfeld,et al.  Higher obstructions to deforming cohomology groups of line bundles , 1991 .

[12]  C. Voisin green's canonical syzygy conjecture for generic curves of odd genus , 2003, Compositio Mathematica.

[13]  Joe Harris,et al.  3264 and All That: A Second Course in Algebraic Geometry , 2016 .

[14]  D. Snow Vanishing theorems on compact hermitian symmetric spaces , 1988 .

[15]  J. Wahl The Jacobian algebra of a graded Gorenstein singularity , 1987 .

[16]  Daniel C. Cohen,et al.  CHEN RANKS AND RESONANCE , 2013, 1312.3652.

[17]  A. Beauville,et al.  Annulation du H1 pour les fibrés en droites plats , 1992 .

[18]  R. Lazarsfeld Brill-Noether-Petri without degenerations , 1986 .

[19]  Alexander I. Suciu,et al.  Resonance, linear syzygies, Chen groups, and the Bernstein-Gelfand-Gelfand correspondence , 2005, math/0502438.

[20]  C. Voisin Sur l’application de Wahl des courbes satisfaisant la condition de Brill-Noether-Petri , 1992 .

[21]  G. Lyubeznik,et al.  Stabilization of the cohomology of thickenings , 2016, American Journal of Mathematics.

[22]  S. Feyzbakhsh Mukai’s program (reconstructing a K3 surface from a curve) via wall-crossing , 2017, Journal für die reine und angewandte Mathematik (Crelles Journal).

[23]  Alexander I. Suciu,et al.  Vanishing resonance and representations of Lie algebras , 2012, 1207.2038.

[24]  M. Green Koszul cohomology and the geometry of projective varieties , 1984 .

[25]  Green’s generic syzygy conjecture for curves of even genus lying on a K3 surface , 2002, math/0205330.

[26]  M. Cornalba,et al.  Calculating cohomology groups of moduli spaces of curves via algebraic geometry , 1998, math/9803001.

[27]  A. Hirschowitz,et al.  New evidence for Green's conjecture on syzygies of canonical curves , 1997, alg-geom/9707017.

[28]  Benjamin Bakker,et al.  The Mercat Conjecture for stable rank 2 vector bundles on generic curves , 2015, 1511.03253.

[29]  E. Sernesi,et al.  On hyperplane sections on K3 surfaces , 2015, Algebraic Geometry.

[30]  J. Weyman,et al.  Koszul modules and Green’s conjecture , 2018, Inventiones mathematicae.

[31]  S. Mukai Biregular classification of Fano 3-folds and Fano manifolds of coindex 3. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[32]  J. Wahl Gaussian maps on algebraic curves , 1990 .

[33]  R. Pandharipande,et al.  Relations in the tautological ring of the moduli space of $K3$ surfaces , 2016, Journal of the European Mathematical Society.

[34]  Alexander I. Suciu,et al.  Chen Lie algebras , 2003, math/0307087.

[35]  Bernd Sturmfels,et al.  Introduction to Chow Forms , 1995 .