Discovery and functional analysis of lncRNAs: Methodologies to investigate an uncharacterized transcriptome.

[1]  H. Ueda,et al.  Erratum to: Quartz-Seq: a highly reproducible and sensitive single-cell RNA sequencing method, reveals non-genetic gene-expression heterogeneity , 2017, Genome Biology.

[2]  Spitale Robert,et al.  Structural imprints in vivo decode RNA regulatory mechanisms , 2016 .

[3]  J. Rinn,et al.  Multiplexable, locus-specific targeting of long RNAs with CRISPR-Display , 2015, Nature Methods.

[4]  K. Hua,et al.  The long non-coding RNA HOTAIR promotes the proliferation of serous ovarian cancer cells through the regulation of cell cycle arrest and apoptosis. , 2015, Experimental cell research.

[5]  Qiangfeng Cliff Zhang,et al.  Systematic Discovery of Xist RNA Binding Proteins , 2015, Cell.

[6]  Kun Zhang,et al.  Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues , 2015, Nature Protocols.

[7]  John M. Shelton,et al.  A Micropeptide Encoded by a Putative Long Noncoding RNA Regulates Muscle Performance , 2015, Cell.

[8]  G. Shan,et al.  Exon-intron circular RNAs regulate transcription in the nucleus , 2015, Nature Structural &Molecular Biology.

[9]  James T. Elder,et al.  Analysis of long non-coding RNAs highlights tissue-specific expression patterns and epigenetic profiles in normal and psoriatic skin , 2015, Genome Biology.

[10]  F. Slack,et al.  Junk DNA and the long non-coding RNA twist in cancer genetics , 2015, Oncogene.

[11]  Zakary S. Singer,et al.  Single-cell transcriptome analysis reveals dynamic changes in lncRNA expression during reprogramming. , 2015, Cell stem cell.

[12]  Fangting Wu,et al.  Targeting non-coding RNAs with the CRISPR/Cas9 system in human cell lines , 2014, Nucleic acids research.

[13]  R. Parker,et al.  Circular RNAs: diversity of form and function , 2014, RNA.

[14]  Nicholas T Ingolia,et al.  Ribosome profiling reveals pervasive translation outside of annotated protein-coding genes. , 2014, Cell reports.

[15]  Sharon R Grossman,et al.  RNA-RNA Interactions Enable Specific Targeting of Noncoding RNAs to Nascent Pre-mRNAs and Chromatin Sites , 2014, Cell.

[16]  Keith W. Vance,et al.  Transcriptional regulatory functions of nuclear long noncoding RNAs , 2014, Trends in genetics : TIG.

[17]  Bian Hu,et al.  Efficient in vivo deletion of a large imprinted lncRNA by CRISPR/Cas9 , 2014, RNA biology.

[18]  R. Guigó,et al.  The RIDL hypothesis: transposable elements as functional domains of long noncoding RNAs , 2014, RNA.

[19]  A. Sandelin,et al.  Deep transcriptome profiling of mammalian stem cells supports a regulatory role for retrotransposons in pluripotency maintenance , 2014, Nature Genetics.

[20]  E. Lander,et al.  Development and Applications of CRISPR-Cas9 for Genome Engineering , 2014, Cell.

[21]  M. Albà,et al.  Long non-coding RNAs as a source of new peptides , 2014, eLife.

[22]  Nikolaus Rajewsky,et al.  Identification of small ORFs in vertebrates using ribosome footprinting and evolutionary conservation , 2014, The EMBO journal.

[23]  T. Gregory,et al.  The Case for Junk DNA , 2014, PLoS genetics.

[24]  Qiangfeng Cliff Zhang,et al.  Landscape and variation of RNA secondary structure across the human transcriptome , 2014, Nature.

[25]  C. Ponting,et al.  Sequencing depth and coverage: key considerations in genomic analyses , 2014, Nature Reviews Genetics.

[26]  Steven R. Head,et al.  Technical Variations in Low-Input RNA-seq Methodologies , 2014, Scientific Reports.

[27]  R. Adams,et al.  Evaluation of TRAP-sequencing technology with a versatile conditional mouse model , 2013, Nucleic acids research.

[28]  M. Zavolan,et al.  PAR-CLIP (Photoactivatable Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation): a step-by-step protocol to the transcriptome-wide identification of binding sites of RNA-binding proteins. , 2014, Methods in enzymology.

[29]  W. Sung,et al.  Chromatin connectivity maps reveal dynamic promoter–enhancer long-range associations , 2013, Nature.

[30]  Sarah K. Bowman,et al.  High-resolution Xist binding maps reveal 2-step spreading during X-inactivation , 2013, Nature.

[31]  D. Reinberg,et al.  PRC2 binds to active promoters and contacts nascent RNAs in embryonic stem cells , 2013, Nature Structural &Molecular Biology.

[32]  Karissa Y Sanbonmatsu,et al.  3S: shotgun secondary structure determination of long non-coding RNAs. , 2013, Methods.

[33]  E. Lander,et al.  The Xist lncRNA Exploits Three-Dimensional Genome Architecture to Spread Across the X Chromosome , 2013, Science.

[34]  Nicholas T. Ingolia,et al.  Ribosome Profiling Provides Evidence that Large Noncoding RNAs Do Not Encode Proteins , 2013, Cell.

[35]  Erik Willems,et al.  Quantitative Transcriptomics using Designed Primer-based Amplification , 2013, Scientific Reports.

[36]  D. Tollervey,et al.  Mapping the Human miRNA Interactome by CLASH Reveals Frequent Noncanonical Binding , 2013, Cell.

[37]  L. Steinmetz,et al.  Extensive transcriptional heterogeneity revealed by isoform profiling , 2013, Nature.

[38]  M. Gill,et al.  Development of Strategies for SNP Detection in RNA-Seq Data: Application to Lymphoblastoid Cell Lines and Evaluation Using 1000 Genomes Data , 2013, PloS one.

[39]  Albert E. Almada,et al.  Divergent transcription of long noncoding RNA/mRNA gene pairs in embryonic stem cells , 2013, Proceedings of the National Academy of Sciences.

[40]  Manolis Kellis,et al.  The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. , 2013, Developmental cell.

[41]  J. Kocher,et al.  CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model , 2013, Nucleic acids research.

[42]  Carolyn J. Brown,et al.  Targeting of >1.5 Mb of Human DNA into the Mouse X Chromosome Reveals Presence of cis-Acting Regulators of Epigenetic Silencing , 2012, Genetics.

[43]  Piero Carninci,et al.  Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat , 2012, Nature.

[44]  Toshiro K. Ohsumi,et al.  Spreading of X chromosome inactivation via a hierarchy of defined Polycomb stations , 2012, Genome research.

[45]  David G. Knowles,et al.  The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression , 2012, Genome research.

[46]  Nadav S. Bar,et al.  Landscape of transcription in human cells , 2012, Nature.

[47]  R. Sandberg,et al.  Full-Length mRNA-Seq from single cell levels of RNA and individual circulating tumor cells , 2012, Nature Biotechnology.

[48]  M. Esteller,et al.  Intronic RNAs mediate EZH2 regulation of epigenetic targets , 2012, Nature Structural &Molecular Biology.

[49]  A. Wakamatsu,et al.  Genome-wide determination of RNA stability reveals hundreds of short-lived noncoding transcripts in mammals , 2012, Genome research.

[50]  Jesse R. Dixon,et al.  Topological Domains in Mammalian Genomes Identified by Analysis of Chromatin Interactions , 2012, Nature.

[51]  Pawel Zajac,et al.  Highly multiplexed and strand-specific single-cell RNA 5′ end sequencing , 2012, Nature Protocols.

[52]  Alexander van Oudenaarden,et al.  Single-cell analysis reveals that noncoding RNAs contribute to clonal heterogeneity by modulating transcription factor recruitment. , 2012, Molecular cell.

[53]  Karissa Y. Sanbonmatsu,et al.  Structural architecture of the human long non-coding RNA, steroid receptor RNA activator , 2012, Nucleic acids research.

[54]  Cole Trapnell,et al.  Targeted RNA sequencing reveals the deep complexity of the human transcriptome , 2011, Nature Biotechnology.

[55]  H. Ueda,et al.  Quartz-Seq : a highly reproducible and sensitive single-cell RNA-Seq reveals non-genetic gene expression heterogeneity , 2012 .

[56]  P. Sorensen,et al.  The majority of total nuclear-encoded non-ribosomal RNA in a human cell is 'dark matter' un-annotated RNA , 2011, BMC Biology.

[57]  Brad A Chapman,et al.  The genomic binding sites of a noncoding RNA , 2011, Proceedings of the National Academy of Sciences.

[58]  Howard Y. Chang,et al.  Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. , 2011, Molecular cell.

[59]  M. Esteller Non-coding RNAs in human disease , 2011, Nature Reviews Genetics.

[60]  Nicholas T. Ingolia,et al.  Ribosome Profiling of Mouse Embryonic Stem Cells Reveals the Complexity and Dynamics of Mammalian Proteomes , 2011, Cell.

[61]  Emily A. Vucic,et al.  Human Cancer Long Non-Coding RNA Transcriptomes , 2011, PloS one.

[62]  Cole Trapnell,et al.  Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. , 2011, Genes & development.

[63]  Howard Y. Chang,et al.  Understanding the transcriptome through RNA structure , 2011, Nature Reviews Genetics.

[64]  John T. Wei,et al.  Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression , 2011, Nature Biotechnology.

[65]  Jeannie T. Lee,et al.  YY1 Tethers Xist RNA to the Inactive X Nucleation Center , 2011, Cell.

[66]  Albert E. Almada,et al.  Antisense RNA polymerase II divergent transcripts are P-TEFb dependent and substrates for the RNA exosome , 2011, Proceedings of the National Academy of Sciences.

[67]  Elphège P. Nora,et al.  Regulation of X-chromosome inactivation by the X-inactivation centre , 2011, Nature Reviews Genetics.

[68]  Howard Y. Chang,et al.  Extensive and coordinated transcription of noncoding RNAs within cell cycle promoters , 2011, Nature Genetics.

[69]  David Tollervey,et al.  Cross-linking, ligation, and sequencing of hybrids reveals RNA–RNA interactions in yeast , 2011, Proceedings of the National Academy of Sciences.

[70]  Blaz Zupan,et al.  iCLIP - Transcriptome-wide Mapping of Protein-RNA Interactions with Individual Nucleotide Resolution , 2011, Journal of visualized experiments : JoVE.

[71]  J. Ule,et al.  Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. , 2011, Nature neuroscience.

[72]  Leighton J. Core,et al.  Regulating RNA polymerase pausing and transcription elongation in embryonic stem cells. , 2011, Genes & development.

[73]  Tim R. Mercer,et al.  Global analysis of the mammalian RNA degradome reveals widespread miRNA-dependent and miRNA-independent endonucleolytic cleavage , 2011, Nucleic acids research.

[74]  J. Ule,et al.  Characterising the RNA targets and position-dependent splicing regulation by TDP-43; implications for neurodegenerative diseases , 2011, Nature Neuroscience.

[75]  Li Yang,et al.  Genomewide characterization of non-polyadenylated RNAs , 2011, Genome Biology.

[76]  A. Børresen-Dale,et al.  Identification of fusion genes in breast cancer by paired-end RNA-sequencing , 2011, Genome Biology.

[77]  D. Haussler,et al.  FragSeq: transcriptome-wide RNA structure probing using high-throughput sequencing , 2010, Nature Methods.

[78]  K. Weeks,et al.  Toward global RNA structure analysis , 2010, Nature Biotechnology.

[79]  I. Grummt,et al.  Interaction of noncoding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes. , 2010, Genes & development.

[80]  B. Blencowe,et al.  The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. , 2010, Molecular cell.

[81]  Howard Y. Chang,et al.  Genome-wide measurement of RNA secondary structure in yeast , 2010, Nature.

[82]  M. Teitell,et al.  PNPASE Regulates RNA Import into Mitochondria , 2010, Cell.

[83]  Howard Y. Chang,et al.  Long Noncoding RNA as Modular Scaffold of Histone Modification Complexes , 2010, Science.

[84]  J. Rinn,et al.  A Large Intergenic Noncoding RNA Induced by p53 Mediates Global Gene Repression in the p53 Response , 2010, Cell.

[85]  Carsten O. Daub,et al.  Linking promoters to functional transcripts in small samples with nanoCAGE and CAGEscan , 2010, Nature Methods.

[86]  J. Rinn,et al.  Ab initio reconstruction of transcriptomes of pluripotent and lineage committed cells reveals gene structures of thousands of lincRNAs , 2010, Nature Biotechnology.

[87]  J. Ragoussis,et al.  A Large Fraction of Extragenic RNA Pol II Transcription Sites Overlap Enhancers , 2010, PLoS biology.

[88]  J. Rinn,et al.  Ab initio reconstruction of transcriptomes of pluripotent and lineage committed cells reveals gene structures of thousands of lincRNAs , 2010, Nature biotechnology.

[89]  P. Robson,et al.  Conserved long noncoding RNAs transcriptionally regulated by Oct4 and Nanog modulate pluripotency in mouse embryonic stem cells. , 2010, RNA.

[90]  J. Mattick,et al.  Non‐coding RNAs: regulators of disease , 2010, The Journal of pathology.

[91]  P. Avner,et al.  2-D Structure of the A Region of Xist RNA and Its Implication for PRC2 Association , 2010, PLoS biology.

[92]  L. Holm,et al.  The Pfam protein families database , 2005, Nucleic Acids Res..

[93]  A. Jacquier The complex eukaryotic transcriptome: unexpected pervasive transcription and novel small RNAs , 2009, Nature Reviews Genetics.

[94]  I. Amit,et al.  Comprehensive mapping of long range interactions reveals folding principles of the human genome , 2011 .

[95]  Kristen K. Dang,et al.  Architecture and Secondary Structure of an Entire HIV-1 RNA Genome , 2009, Nature.

[96]  Leo J. Lee,et al.  Current-generation high-throughput sequencing: deepening insights into mammalian transcriptomes. , 2009, Genes & development.

[97]  J. Kawai,et al.  The regulated retrotransposon transcriptome of mammalian cells , 2009, Nature Genetics.

[98]  Nicholas T. Ingolia,et al.  Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling , 2009, Science.

[99]  J. Mattick The Genetic Signatures of Noncoding RNAs , 2009, PLoS genetics.

[100]  Lior Pachter,et al.  Sequence Analysis , 2020, Definitions.

[101]  W. Reik,et al.  The long noncoding RNA Kcnq1ot1 organises a lineage-specific nuclear domain for epigenetic gene silencing , 2009, Development.

[102]  Michael F. Lin,et al.  Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals , 2009, Nature.

[103]  Gene W. Yeo,et al.  Divergent Transcription from Active Promoters , 2008, Science.

[104]  P. Greengard,et al.  A Translational Profiling Approach for the Molecular Characterization of CNS Cell Types , 2008, Cell.

[105]  Jeannie T. Lee,et al.  Polycomb Proteins Targeted by a Short Repeat RNA to the Mouse X Chromosome , 2008, Science.

[106]  Marcel H. Schulz,et al.  A Global View of Gene Activity and Alternative Splicing by Deep Sequencing of the Human Transcriptome , 2008, Science.

[107]  R. Lister,et al.  A link between RNA metabolism and silencing affecting Arabidopsis development. , 2008, Developmental cell.

[108]  S. Luo,et al.  Global identification of microRNA–target RNA pairs by parallel analysis of RNA ends , 2008, Nature Biotechnology.

[109]  D. Bartel,et al.  Endogenous siRNA and miRNA Targets Identified by Sequencing of the Arabidopsis Degradome , 2008, Current Biology.

[110]  Changning Liu,et al.  MicroRNA-encoding long non-coding RNAs , 2008, BMC Genomics.

[111]  Joseph R Ecker,et al.  Mapping the genome landscape using tiling array technology. , 2007, Current opinion in plant biology.

[112]  M. Takeichi,et al.  The mRNA-like noncoding RNA Gomafu constitutes a novel nuclear domain in a subset of neurons , 2007, Journal of Cell Science.

[113]  Howard Y. Chang,et al.  Functional Demarcation of Active and Silent Chromatin Domains in Human HOX Loci by Noncoding RNAs , 2007, Cell.

[114]  P. Stadler,et al.  RNA Maps Reveal New RNA Classes and a Possible Function for Pervasive Transcription , 2007, Science.

[115]  C. Brenner,et al.  p53 Activation by Knockdown Technologies , 2007, PLoS genetics.

[116]  Ana Serra Barros,et al.  Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript , 2007, Nature.

[117]  G. Lang [Cross linking]. , 2007, Klinische Monatsblatter fur Augenheilkunde.

[118]  David Bryder,et al.  Transcription factor profiling in individual hematopoietic progenitors by digital RT-PCR , 2006, Proceedings of the National Academy of Sciences.

[119]  Jun Kawai,et al.  Clusters of Internally Primed Transcripts Reveal Novel Long Noncoding RNAs , 2006, PLoS genetics.

[120]  S. Batalov,et al.  Antisense Transcription in the Mammalian Transcriptome , 2005, Science.

[121]  S. Salzberg,et al.  The Transcriptional Landscape of the Mammalian Genome , 2005, Science.

[122]  B. Séraphin,et al.  Cryptic Pol II Transcripts Are Degraded by a Nuclear Quality Control Pathway Involving a New Poly(A) Polymerase , 2005, Cell.

[123]  G. Helt,et al.  Transcriptional Maps of 10 Human Chromosomes at 5-Nucleotide Resolution , 2005, Science.

[124]  J. Ecker,et al.  Applications of DNA tiling arrays for whole-genome analysis. , 2005, Genomics.

[125]  J. Goodrich,et al.  The SINE-encoded mouse B2 RNA represses mRNA transcription in response to heat shock , 2004, Nature Structural &Molecular Biology.

[126]  J. Mattick RNA regulation: a new genetics? , 2004, Nature Reviews Genetics.

[127]  Tyra G. Wolfsberg,et al.  Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[128]  Robert D. Finn,et al.  The Pfam protein families database , 2004, Nucleic Acids Res..

[129]  J. Kawai,et al.  Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[130]  E. Birney,et al.  Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs , 2002, Nature.

[131]  Ji Huang,et al.  [Serial analysis of gene expression]. , 2002, Yi chuan = Hereditas.

[132]  S. Eddy Non–coding RNA genes and the modern RNA world , 2001, Nature Reviews Genetics.

[133]  J. Mcneil,et al.  XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure , 1996, The Journal of cell biology.

[134]  K. Maruyama,et al.  Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. , 1994, Gene.

[135]  C. Waldron,et al.  Effect of growth rate on the amounts of ribosomal and transfer ribonucleic acids in yeast , 1975, Journal of bacteriology.

[136]  D. Comings The structure and function of chromatin. , 1972, Advances in human genetics.