Advanced Anti-Jam Indoor Adaptive GNSS Signal Acquisition: Part 1, Normal Distribution--Theory and Simulations

In this paper an advanced anti-jam indoor adaptive GNSS signal acquisition and tracking algorithm is considered. Initially, we were able to determine that double-dwell structure (DDS) reduces the processing time penalty caused by false alarm. Nevertheless, the DDS is still vulnerable to interference and jamming. In order to determine a suitable advanced anti-jam indoor adaptive GNSS signal acquisition and tracking algorithm for DDS we first perform the Bayesian parameter estimation; i.e., we analytically compute the posterior Bayes probability density function (pdf) and cumulative distribution function (cdf) by applying the Bayes theorem in three steps. First, we compute the complex signal distribution and complex matrix variate signal distribution. This is an original new result never published before. Second, we provide an introduction of the equivalence of the maximum likelihood (ML) GNSS parameter estimation based MLE with the Bayes Parameter Estimation (see Appendix A). Third, under the assumption of interference as normal distribution, in both the scalar case and complex matrix variate cases we observe that the complex matrix variate Bayesian posterior pdf or cdf is invariant of the observation data or is identical to the prior complex matrix variate signal distribution model. This is an original new and very powerful result never published before which leads to the equivalence of the MLE with the Bayes Parameter Estimation (see Appendix A). 72 Journal of Geolocation, Geo-information, and Geo-intelligence Why this result is so powerful is because up until now we never had a complete theoretical validation of our GNSS receiver design based on either autocorrelation or cross-correlation properties since, the complex matrix variate Bayesian posterior pdf or cdf is invariant of the observation data or is identical to the prior complex matrix variate signal distribution model. Simulation results illustrate that the MLE receiver exhibits a 75 dB SINR improvement performance against a Cross-Correlator CC receiver even under extreme jamming conditions.

[1]  Pengda Huang,et al.  GPS Signal Detection under Multiplicative and Additive Noise , 2013 .

[2]  Ilir F. Progri An Assessment of Indoor Geolocation Systems , 2003 .

[3]  H T Waaler,et al.  Bayes' Theorem , 2017, Encyclopedia of Machine Learning and Data Mining.

[4]  Jason Baldwin,et al.  The UHARS Non-GPS-Based Positioning System (NGBPS) , 2014 .

[5]  Dang-Zheng Liu Singular Values for Products of Two Coupled Random Matrices: Hard Edge Phase Transition , 2016, 1602.00634.

[6]  Thomas Brox,et al.  Maximum Likelihood Estimation , 2019, Time Series Analysis.

[7]  M.C. Bromberg,et al.  Bayesian parameter estimation for time and frequency synchronization , 2005, Symposium, 2005 Wireless Telecommunications.

[8]  William R. Michalson,et al.  Assessing the Accuracy of Underground Positioning Using Pseudolites , 2000 .

[9]  William R. Michalson,et al.  An Investigation of the Pseudolite's Signal Structure for Indoor Applications , 2001 .

[10]  G. H. Wang,et al.  Attitude Bias Conversion Model for Mobile Radar Error Registration , 2012, Journal of Navigation.

[11]  Daya K. Nagar,et al.  Expectations of Functions of Complex Wishart Matrix , 2011 .

[12]  Jinling Wang,et al.  Markov Chain, Monte Carlo Global Search and Integration for Bayesian, GPS, Parameter Estimation , 2009 .

[13]  A. Rukhin Matrix Variate Distributions , 1999, The Multivariate Normal Distribution.

[14]  A. M. Mathai Jacobians of matrix transformations and functions of matrix argument , 1997 .

[15]  Sarah Rothstein Jacobians Of Matrix Transformations And Functions Of Matrix Argument , 2016 .

[16]  William R. Michalson,et al.  Requirements of a C-CDMA Pseudolite Indoor Geolocation System , 2017 .

[17]  Ilir F. Progri,et al.  Unified Registration Model for Both Stationary and Mobile 3D Radar Alignment , 2014, J. Electr. Comput. Eng..

[18]  William R. Michalson,et al.  The Acquisition Process of a Maximun Likelihood GPS Receiver , 2003 .

[19]  William R. Michalson,et al.  Assessing the Accuracy of Navigation Algorithms Using a Combined System of GPS Satellites and Pseudolites , 2001 .

[20]  William R. Michalson,et al.  An Innovative Navigation Algorithm Using a System of Fixed Pseudolites , 2001 .

[21]  Xuan Xia,et al.  Indoor Adaptive GNSS Signal Acquisition. Part 1: Theory and Simulations , 2016 .

[22]  M.C. Bromberg,et al.  An Anti-Jam GPS Receiver, using Markov Chain, Monte Carlo Integration , 2006, 2006 IEEE/ION Position, Location, And Navigation Symposium.

[23]  D. Kraus,et al.  Calculation of moments of complex Wishart and complex inverse Wishart distributed matrices , 2000 .

[24]  A. James The Distribution of Noncentral Means with Known Covariance , 1961 .

[25]  Lin Zhang Dirac Delta Function of Matrix Argument , 2016, International Journal of Theoretical Physics.

[26]  A. James Distributions of Matrix Variates and Latent Roots Derived from Normal Samples , 1964 .

[27]  T. Ratnarajah,et al.  Complex singular wishart matrices and applications , 2005 .

[28]  Ilir F. Progri GPS L5 Signal Acquisition and Tracking Under Unintentional Interference or Jamming , 2006 .

[29]  William R. Michalson,et al.  An Enhanced Acquisition Process of a Maximum Likelihood GPS Receiver , 2004 .

[30]  William R. Michalson,et al.  A combined GPS satellite/pseudolite system for Category III precision landing , 2002, 2002 IEEE Position Location and Navigation Symposium (IEEE Cat. No.02CH37284).

[31]  B. Bakshi,et al.  Bayesian principal component analysis , 2002 .

[32]  G. Arfken Mathematical Methods for Physicists , 1967 .

[33]  Adriaan van den Bos,et al.  The multivariate complex normal distribution-a generalization , 1995, IEEE Trans. Inf. Theory.

[34]  M. Buchanan The random matrix , 2010 .

[37]  William R. Michalson,et al.  Maximum-likelihood GPS parameter estimation , 2005 .

[38]  Ilir F. Progri Performance Evaluation of the Direct Acquisition of GPS-like VBOC Signals against Noise and Interference--Technical Report , 2016 .

[39]  Ilir F. Progri Generalized Bessel Function Distributions , 2016 .

[40]  Ilir F. Progri,et al.  Monte Carlo Global Search for Bayesian, GPS, Parameter Estimation , 2004 .

[41]  William R. Michalson,et al.  Performance evaluation of Category III precision landing using airport pseudolites , 2000, IEEE 2000. Position Location and Navigation Symposium (Cat. No.00CH37062).

[42]  Patrick Maher Bayesian probability , 2009, Synthese.

[43]  J. A. Díaz-García,et al.  On Wishart distribution , 2010, 1010.1799.

[44]  K. C. S. Pillai,et al.  Some Distribution Problems in the Multivariate Complex Gaussian Case , 1971 .

[45]  N. R. Goodman Statistical analysis based on a certain multivariate complex Gaussian distribution , 1963 .

[46]  William R. Michalson,et al.  A Doppler Based Navigation Algorithm , 2001 .

[48]  William R. Michalson,et al.  Indoor Geolocation Using FCDMA Pseudolites: Signal Structure and Performance Analysis , 2007 .