An overview on the eigenvalue computation for matrices
暂无分享,去创建一个
[1] Gerard L. G. Sleijpen,et al. Jacobi-Davidson Style QR and QZ Algorithms for the Reduction of Matrix Pencils , 1998, SIAM J. Sci. Comput..
[2] Ilse C. F. Ipsen. Computing an Eigenvector with Inverse Iteration , 1997, SIAM Rev..
[3] G. Stewart. On the Sensitivity of the Eigenvalue Problem $Ax = \lambda Bx$ , 1972 .
[4] J. H. Wilkinson,et al. Handbook for Automatic Computation. Vol II, Linear Algebra , 1973 .
[5] Kesheng Wu,et al. Thick-Restart Lanczos Method for Symmetric Eigenvalue Problems , 1998, IRREGULAR.
[6] M. Géradin,et al. On the practical use of the lanczos algorithm in finite element applications to vibration and bifurcation problems , 1983 .
[7] W. Feller,et al. New matrix transformations for obtaining characteristic vectors , 1951 .
[8] A. C. Aitken. XX.—Studies in Practical Mathematics. II. The Evaluation of the Latent Roots and Latent Vectors of a Matrix , 1938 .
[9] P. Henrici. Bounds for iterates, inverses, spectral variation and fields of values of non-normal matrices , 1962 .
[10] V. Hari. On sharp quadratic convergence bounds for the serial Jacobi methods , 1991 .
[11] P. J. Eberlein. Errata: A Jacobi-Like Method for the Automatic Computation of Eigenvalues and Eigenvectors , 1962 .
[12] David S. Watkins,et al. POLYNOMIAL EIGENVALUE PROBLEMS WITH HAMILTONIAN STRUCTURE , 2002 .
[13] Haesun Park,et al. Self-scaling fast rotations for stiff and equality-constrained linear least squares problems , 1996 .
[14] J. Cullum,et al. A Practical Procedure for Computing Eigenvalues of Large Sparse Nonsymmetric Matrices , 1986 .
[15] Gene H. Golub,et al. Matrix computations , 1983 .
[16] Andreas Acrivos,et al. The instability of the steady flow past spheres and disks , 1993, Journal of Fluid Mechanics.
[17] S. Petiton. Parallel subspace method for non-Hermitian eigenproblems on the Connection Machine (CM2) , 1992 .
[18] Y. Saad,et al. Complex shift and invert strategies for real matrices , 1987 .
[19] Gerard L. G. Sleijpen,et al. A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM J. Matrix Anal. Appl..
[20] Friedrich L. Bauer,et al. On certain methods for expanding the characteristic polynomial , 1959, Numerische Mathematik.
[21] Jane Cullum,et al. A Lanczos procedure for the modal analysis of very large nonsymmetric matrices , 1984, The 23rd IEEE Conference on Decision and Control.
[22] D. Sorensen,et al. A Truncated RQ Iteration for Large Scale Eigenvalue Calculations , 1998 .
[23] A. C. Aitken. XXV.—On Bernoulli's Numerical Solution of Algebraic Equations , 1927 .
[24] E. Ovtchinnikov,et al. Successive eigenvalue relaxation: a new method for the generalized eigenvalue problem and convergence estimates , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[25] Bo Kågström,et al. An Algorithm for Numerical Computation of the Jordan Normal Form of a Complex Matrix , 1980, TOMS.
[26] H. Hotelling. Analysis of a complex of statistical variables into principal components. , 1933 .
[27] C. Jordan,et al. Mémoire sur les formes bilinéaires. , 1874 .
[28] David S. Watkins,et al. The transmission of shifts and shift blurring in the QR algorithm , 1996 .
[29] D. Calvetti,et al. AN IMPLICITLY RESTARTED LANCZOS METHOD FOR LARGE SYMMETRIC EIGENVALUE PROBLEMS , 1994 .
[30] A. Ostrowski. On the convergence of the Rayleigh quotient iteration for the computation of the characteristic roots and vectors. I , 1957 .
[31] D. Young,et al. A Survey of Numerical Mathematics , 1988 .
[32] Heinz Rutishauser. Anwendungen des Quotienten-Differenzen-Algorithmus , 1954 .
[33] G. Stewart,et al. Matrix Perturbation Theory , 1990 .
[34] J. Neumann,et al. Numerical inverting of matrices of high order , 1947 .
[35] R. Natarajan. An Arnoldi-based iterative scheme for nonsymmetric matrix pencils arising in finite element stability problems , 1992 .
[36] J. B. Rosser,et al. Separation of close eigenvalues af a real symmetric matrix , 1951 .
[37] P. Henrici. On the Speed of Convergence of Cyclic and Quasicyclic Jacobi Methods for Computing Eigenvalues of Hermitian Matrices , 1958 .
[38] J. Demmel. Computing stable eigendecompositions of matrices , 1986 .
[39] Robert C. Ward,et al. Balancing the Generalized Eigenvalue Problem , 1981 .
[40] D. Sorensen. Numerical methods for large eigenvalue problems , 2002, Acta Numerica.
[41] Axel Ruhe. Computing nonlinear eigenvalues with spectral transformation Arnoldi , 1996 .
[42] Nicholas J. Higham,et al. Structured Backward Error and Condition of Generalized Eigenvalue Problems , 1999, SIAM J. Matrix Anal. Appl..
[43] W. Gentleman. Error analysis of QR decompositions by Givens transformations , 1975 .
[44] David D. Morrison. Remarks on the Unitary Triangularization of a Nonsymmetric Matrix , 1960, JACM.
[45] S. Kaniel. Estimates for Some Computational Techniques - in Linear Algebra , 1966 .
[46] Zhishun A. Liu,et al. A Look Ahead Lanczos Algorithm for Unsymmetric Matrices , 1985 .
[47] B. Parlett,et al. Accurate singular values and differential qd algorithms , 1994 .
[48] Christopher C. Paige,et al. The computation of eigenvalues and eigenvectors of very large sparse matrices , 1971 .
[49] A. Turing. ROUNDING-OFF ERRORS IN MATRIX PROCESSES , 1948 .
[50] Y. Saad. On the Rates of Convergence of the Lanczos and the Block-Lanczos Methods , 1980 .
[51] On Kublanovskaya''s approach to the solution of the generalized latent value problem for functional , 1983 .
[52] B. Parlett,et al. The Lanczos algorithm with selective orthogonalization , 1979 .
[53] G. Stewart,et al. An Algorithm for Generalized Matrix Eigenvalue Problems. , 1973 .
[54] David S. Watkins. Performance of the QZ Algorithm in the Presence of Infinite Eigenvalues , 2000, SIAM J. Matrix Anal. Appl..
[55] J. Greenstadt. A method for finding roots of arbitrary matrices , 1955 .
[56] Alston S. Householder,et al. Unitary Triangularization of a Nonsymmetric Matrix , 1958, JACM.
[57] J. Hadamard,et al. Essai sur l'étude des fonctions données par leur développement de Taylor , 1892 .
[58] F. L. Bauer. Sequential Reduction to Tridiagonal Form , 1959 .
[60] Friedrich L. Bauer. On Modern Matrix Iteration Processes of Bernoulli and Graeffe Type , 1958, JACM.
[61] Roland W. Freund,et al. An Implementation of the Look-Ahead Lanczos Algorithm for Non-Hermitian Matrices , 1993, SIAM J. Sci. Comput..
[62] Ed Anderson,et al. LAPACK Users' Guide , 1995 .
[63] A. Householder. A Class of Methods for Inverting Matrices , 1958 .
[64] G. Stewart. Matrix Algorithms, Volume II: Eigensystems , 2001 .
[65] J. Cullum,et al. Lanczos algorithms for large symmetric eigenvalue computations , 1985 .
[66] C. Paige. Computational variants of the Lanczos method for the eigenproblem , 1972 .
[67] Arnold Schönhage,et al. Zur Konvergenz des Jacobi-Verfahrens , 1961 .
[68] Roland W. Freund,et al. QMRPACK: a package of QMR algorithms , 1996, TOMS.
[69] Bo Kågström,et al. Algorithm 560: JNF, An Algorithm for Numerical Computation of the Jordan Normal Form of a Complex Matrix [F2] , 1980, TOMS.
[70] C. Jacobi,et al. C. G. J. Jacobi's Gesammelte Werke: Über ein leichtes Verfahren, die in der Theorie der Sacularstorungen vorkommenden Gleichungen numerisch aufzulosen , 1846 .
[71] Y. Saad,et al. Numerical solution of large Lyapunov equations , 1989 .
[72] J. G. F. Francis,et al. The QR Transformation - Part 2 , 1962, Comput. J..
[73] Rudolf Zurmühl,et al. Matrizen und ihre Anwendungen 1 , 1997 .
[74] H. Rutishauser. The Jacobi method for real symmetric matrices , 1966 .
[75] R. Ward. The Combination Shift $QZ$ Algorithm , 1975 .
[76] J. H. Wilkinson. Global convergene of tridiagonal QR algorithm with origin shifts , 1968 .
[77] R. R. Whitehead,et al. A numerical approach to nuclear shell-model calculations , 1972 .
[78] Ivan Slapničar,et al. Accurate Symmetric Eigenreduction by a Jacobi Method , 1993 .
[79] G. Forsythe. Singularity and near Singularity in Numerical Analysis , 1958 .
[80] P. Dooren. The Computation of Kronecker's Canonical Form of a Singular Pencil , 1979 .
[81] Beresford N. Parlett,et al. Canonical decomposition of Hessenberg matrices , 1967 .
[82] Amy Nicole Langville,et al. Google's PageRank and beyond - the science of search engine rankings , 2006 .
[83] F. R. Gantmakher. The Theory of Matrices , 1984 .
[84] R. A. Brooker,et al. The method of Lanczos for calculating the characteristic roots and vectors of a real symmetric matrix , 1956 .
[85] E. Davidson. The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices , 1975 .
[86] Beresford N. Parlett,et al. The Software Scene in the Extraction of Eigenvalues from Sparse Matrices , 1984 .
[87] J. Reid,et al. Tracking the Progress of the Lanczos Algorithm for Large Symmetric Eigenproblems , 1981 .
[88] Robert L. Causey,et al. Computing Eigenvalues of Non-Hermitian Matrices by Methods of Jacobi Type , 1958 .
[89] J. G. F. Francis,et al. The QR Transformation A Unitary Analogue to the LR Transformation - Part 1 , 1961, Comput. J..
[90] James Hardy Wilkinson,et al. Householder's Method for the Solution of the Algebraic Eigenproblem , 1960, Comput. J..
[91] James M. Ortega,et al. An error analysis of Householder's method for the symmetric eigenvalue problem , 1962 .
[92] B. Parlett. Analysis of Algorithms for Reflections in Bisectors , 1971 .
[93] Gene H. Golub,et al. The Lanczos-Arnoldi algorithm and controllability , 1984 .
[94] D. Calvetti,et al. Iterative methods for the computation of a few eigenvalues of a large symmetric matrix , 1996 .
[95] V. Hari,et al. A note on a one-sided Jacobi algorithm , 1989 .
[96] James Hardy Wilkinson,et al. Kronecker''s canonical form and the QZ algorithm , 1979 .
[97] David A. Pope,et al. Maximizing Functions of Rotations—Experiments Concerning Speed of Diagonalization of Symmetric Matrices Using Jacobi's Method , 1957, JACM.
[98] C. Paige. Error Analysis of the Lanczos Algorithm for Tridiagonalizing a Symmetric Matrix , 1976 .
[99] Yunkai Zhou,et al. Studies on Jacobi–Davidson, Rayleigh quotient iteration, inverse iteration generalized Davidson and Newton updates , 2006, Numer. Linear Algebra Appl..
[100] Chao Yang,et al. Convergence analysis of an inexact truncated RQ-iteration. , 1998 .
[101] Steve Batterson,et al. Rayleigh quotient iteration for nonsymmetric matrices , 1990 .
[102] James Demmel,et al. On a Block Implementation of Hessenberg Multishift QR Iteration , 1989, Int. J. High Speed Comput..
[103] Jack Dongarra,et al. Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.
[104] Gene H. Golub,et al. The block Lanczos method for computing eigenvalues , 2007, Milestones in Matrix Computation.
[105] Volker Mehrmann,et al. Structure-Preserving Methods for Computing Eigenpairs of Large Sparse Skew-Hamiltonian/Hamiltonian Pencils , 2001, SIAM J. Sci. Comput..
[106] Axel Ruhe. Perturbation bounds for means of eigenvalues and invariant subspaces , 1970 .
[107] C. Reinsch,et al. Balancing a matrix for calculation of eigenvalues and eigenvectors , 1969 .
[108] V. Mehrmann. The Autonomous Linear Quadratic Control Problem: Theory and Numerical Solution , 1991 .
[109] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[110] Y. Saad. Variations on Arnoldi's method for computing eigenelements of large unsymmetric matrices , 1980 .
[111] Jagdish J. Modi,et al. Parallel algorithms and matrix computation , 1988 .
[112] P. Horst. A method of factor analysis by means of which all coordinates of the factor matrix are given simultaneously , 1937 .
[113] H. Rutishauser. Der Quotienten-Differenzen-Algorithmus , 1954 .
[114] R. Mises,et al. Praktische Verfahren der Gleichungsauflösung . , 1929 .
[115] J. H. Wilkinson. Note on the quadratic convergence of the cyclic Jacobi process , 1962 .
[116] Martin H. Gutknecht,et al. A Completed Theory of the Unsymmetric Lanczos Process and Related Algorithms, Part I , 1992, SIAM J. Matrix Anal. Appl..
[117] V. Kublanovskaya. On some algorithms for the solution of the complete eigenvalue problem , 1962 .
[118] Ming Gu. Finding Well-Conditioned Similarities to Block-Diagonalize Nonsymmetric Matrices Is NP-Hard , 1995, J. Complex..
[119] D. Sorensen,et al. 4. The Implicitly Restarted Arnoldi Method , 1998 .
[120] Youcef Saad,et al. Overview of Krylov subspace methods with applications to control problems , 1989 .
[121] James Demmel,et al. Jacobi's Method is More Accurate than QR , 1989, SIAM J. Matrix Anal. Appl..
[122] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[123] K. Singhal,et al. On roots of functional lambda matrices , 1983 .
[124] Kesheng Wu,et al. Thick-Restart Lanczos Method for Large Symmetric Eigenvalue Problems , 2000, SIAM J. Matrix Anal. Appl..
[125] F. L. Bauer. Das Verfahren der Treppeniteration und verwandte Verfahren zur Lösung algebraischer Eigenwertprobleme , 1957 .
[126] Mei Han An,et al. accuracy and stability of numerical algorithms , 1991 .
[127] J. H. Wilkinson,et al. Handbook for Automatic Computation: Linear Algebra (Grundlehren Der Mathematischen Wissenschaften, Vol 186) , 1986 .
[128] Peter Benner,et al. The Symplectic Eigenvalue Problem, the Butterfly Form, the SR Algorithm, and the Lanczos Method , 1998 .
[129] Bo Kågström,et al. Extracting partial canonical structure for large scale eigenvalue problems , 2004, Numerical Algorithms.
[130] Zhang Zhenyue,et al. A new shift of the QL algorithm for irreducible symmetric tridiagonal matrices , 1985 .
[131] C. Donald LaBudde,et al. The reduction of an arbitrary real square matrix to tridiagonal form using similarity transformations , 1963 .
[132] P. Mantegazza,et al. Efficient solution of quadratic eigenproblems arising in dynamic analysis of structures , 1977 .
[133] Axel Ruhe. The Rational Krylov Algorithm for Nonlinear Matrix Eigenvalue Problems , 2003 .
[134] Jack J. Dongarra,et al. Matrix Eigensystem Routines — EISPACK Guide Extension , 1977, Lecture Notes in Computer Science.
[135] Peter Benner,et al. Numerical Computation of Deflating Subspaces of Skew-Hamiltonian/Hamiltonian Pencils , 2002, SIAM J. Matrix Anal. Appl..
[136] H. W. Turnbull,et al. An Introduction to the Theory of Canonical Matrices , 1932, Nature.
[137] M. Gutknecht. A Completed Theory of the Unsymmetric Lanczos Process and Related Algorithms. Part II , 1994, SIAM J. Matrix Anal. Appl..
[138] J. Reid,et al. On the Automatic Scaling of Matrices for Gaussian Elimination , 1972 .
[139] James Hardy Wilkinson,et al. Convergence of the LR, QR, and Related Algorithms , 1965, Comput. J..
[140] Gene H. Golub,et al. Ill-conditioned eigensystems and the computation of the Jordan canonical form , 1975, Milestones in Matrix Computation.
[141] Danny C. Sorensen,et al. Implicit Application of Polynomial Filters in a k-Step Arnoldi Method , 1992, SIAM J. Matrix Anal. Appl..
[142] O. Perron. Zur Theorie der Matrices , 1907 .
[143] James Demmel,et al. Applied Numerical Linear Algebra , 1997 .
[144] H. V. D. Vorst,et al. Jacobi-Davidson style QR and QZ algorithms for the partial reduction of matrix pencils , 1996 .
[145] J. Smillie,et al. The dynamics of Rayleigh quotient iteration , 1989 .
[146] Axel Ruhe,et al. Rational Krylov for Large Nonlinear Eigenproblems , 2004, PARA.
[147] J. Olsen,et al. Passing the one-billion limit in full configuration-interaction (FCI) calculations , 1990 .
[148] G. Golub,et al. 150 years old and still alive: eigenproblems , 1997 .
[149] J. H. Wilkinson. Error analysis of floating-point computation , 1960 .
[150] G. Stewart. Introduction to matrix computations , 1973 .
[151] F. J. Corbató,et al. On the Coding of Jacobi's Method for Computing Eigenvalues and Eigenvectors of Real Symmetric Matrices , 1963, JACM.
[152] Efstratios Gallopoulos,et al. Computing smallest singular triplets with implicitly restarted Lanczos bidiagonalization , 2004, Applied Numerical Mathematics.
[153] P. Lancaster,et al. Factorization of selfadjoint matrix polynomials with constant signature , 1982 .
[154] James Demmel,et al. LAPACK Users' Guide, Third Edition , 1999, Software, Environments and Tools.
[155] Axel Ruhe,et al. Rational Krylov: A Practical Algorithm for Large Sparse Nonsymmetric Matrix Pencils , 1998, SIAM J. Sci. Comput..
[156] H. P. Kempen. On the quadratic convergence of the special cyclic Jacobi method , 1966 .
[157] V. V. Voyevodin,et al. A method for the solution of the complete eigenvalue problem , 1963 .
[158] David S. Scott,et al. Implementing Lanczos-like algorithms on hypercube architectures , 1989 .
[159] I. Schur. Über die charakteristischen Wurzeln einer linearen Substitution mit einer Anwendung auf die Theorie der Integralgleichungen , 1909 .
[160] P. Hager,et al. The Rational Krylov Algorithm for Nonlinear Eigenvalue Problems, in Computational Mechanics for the Twenty-First Century , 2000 .
[161] M. C. Jordan. Traite des substitutions et des equations algebriques , 1870 .
[162] W. Givens. Numerical Computation of the Characteristic Values of a Real Symmetric Matrix , 1954 .
[163] Chao Yang,et al. Solving Large-scale Eigenvalue Problems in SciDAC Applications , 2005 .
[164] Karen S. Braman,et al. The Multi-shift Qr-algorithm: Aggressive Deeation, Maintaining Well Focused Shifts, and Level 3 Performance , 1999 .
[165] O. Taussky. A Recurring Theorem on Determinants , 1949 .
[166] R. T. Gregory. Computing eigenvalues and eigenvectors of a symmetric matrix on the ILLIAC , 1953 .
[167] Jean Descloux,et al. Bounds for the spectral norm of functions of matrices , 1963 .
[168] E. E. Osborne. On Pre-Conditioning of Matrices , 1960, JACM.
[169] David S. Watkins,et al. Convergence of algorithms of decomposition type for the eigenvalue problem , 1991 .
[170] J. Cullum,et al. A generalized nonsymmetric Lanczos procedure , 1989 .
[171] W. Arnoldi. The principle of minimized iterations in the solution of the matrix eigenvalue problem , 1951 .
[172] M. Lotkin. Characteristic values of arbitrary matrices , 1956, ACM '56.
[173] James Hardy Wilkinson,et al. The Calculation of the Eigenvectors of Codiagonal Matrices , 1958, Comput. J..
[174] T. D. Roopamala,et al. Eigenvalues of Structural Matrices Via Gerschgorin Theorem , 2010 .
[175] P. Hager. Eigenfrequency Analysis FE-Adaptivity and a Nonlinear Eigenproblem Algorithm , 2001 .
[176] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .
[177] G. Stewart,et al. An Algorithm for Computing Reducing Subspaces by Block Diagonalization. , 1979 .
[178] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[179] Maurice Clint,et al. The Evaluation of Eigenvalues and Eigenvectors of Real Symmetric Matrices by Simultaneous Iteration , 1970, Comput. J..
[180] G. W. Stewart,et al. Matrix algorithms , 1998 .
[181] David S. Watkins,et al. Forward Stability and Transmission of Shifts in the QR Algorithm , 1995, SIAM J. Matrix Anal. Appl..
[182] Chandler Davis. Explicit functional calculus , 1973 .