Satellite-based carbon stock estimation for bamboo forest with a non-linear partial least square regression technique

This article explores a non-linear partial least square (NLPLS) regression method for bamboo forest carbon stock estimation based on Landsat Thematic Mapper (TM) data. Two schemes, leave-one-out (LOO) cross validation (scheme 1) and split sample validation (scheme 2), are used to build models. For each scheme, the NLPLS model is compared to a linear partial least square (LPLS) regression model and multivariant linear model based on ordinary least square (LOLS). This research indicates that an optimized NLPLS regression mode can substantially improve the estimation accuracy of Moso bamboo (Phyllostachys heterocycla var. pubescens) carbon stock, and it provides a new method for estimating biophysical variables by using remotely sensed data.

[1]  S. M. Jong,et al.  Above‐ground biomass assessment of Mediterranean forests using airborne imaging spectrometry: the DAIS Peyne experiment , 2003 .

[2]  Kaneyuki Nakane,et al.  Forest Vegetation Classification and Biomass Estimation Based on Landsat TM Data in a Mountainous Region of West Japan , 1997 .

[3]  B. Griscom,et al.  Biomass estimations and carbon stock calculations in the oil palm plantations of African derived savannas using IKONOS data , 2004 .

[4]  Roman Rosipal,et al.  Overview and Recent Advances in Partial Least Squares , 2005, SLSFS.

[5]  D. Lu Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon , 2005 .

[6]  Yu Cheng,et al.  Biomass estimation and uncertainty analysis based on CBERS-02 CCD camera data and field measurement , 2005, Science China Technological Sciences.

[7]  Wu Qian-hong Dynamic Carbon Sink of Forests in Yuhang City with the Development of Urbanization , 2004 .

[8]  Xu Jun,et al.  The growth of γ-LiAlO 2 layer with a highly-preferred orientation on (0001) sapphire , 2005 .

[9]  G. Foody,et al.  Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions , 2003 .

[10]  Giles M. Foody,et al.  Mapping the biomass of Bornean tropical rain forest from remotely sensed data , 2001 .

[11]  Wang Hui Application of non-linear partial least square regression in electricity load prediction , 2006 .

[12]  Chen Xian,et al.  Carbon stock changes in bamboo stands in china over the last 50 years , 2008 .

[13]  Janne Heiskanen,et al.  Estimating biomass for boreal forests using ASTER satellite data combined with standwise forest inventory data , 2005 .

[14]  Brian R. Sturtevant,et al.  Estimation of forest structural parameters using 5 and 10 meter SPOT-5 satellite data , 2009 .

[15]  B. Markham,et al.  Summary of Current Radiometric Calibration Coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI Sensors , 2009 .

[16]  D. Lu The potential and challenge of remote sensing‐based biomass estimation , 2006 .

[17]  BAMBOO ECOSYSTEM AND CARBON DIOXIDE SEQUESTRATION 1 , 2008 .

[18]  Zhang Yan-li,et al.  The Detection and Elimination of Abnormal Data During Data Treatment and Valuation of Polymer Science , 2007 .

[19]  J. Shao,et al.  The jackknife and bootstrap , 1996 .

[20]  Cyril Goutte,et al.  Note on Free Lunches and Cross-Validation , 1997, Neural Computation.

[21]  Weiliang Fan,et al.  Spatial heterogeneity and carbon contribution of aboveground biomass of moso bamboo by using geostatistical theory , 2010, Plant Ecology.

[22]  W. Cohen,et al.  An improved strategy for regression of biophysical variables and Landsat ETM+ data. , 2003 .

[23]  Weiliang Fan,et al.  Estimation of aboveground carbon stock of Moso bamboo (Phyllostachys heterocycla var. pubescens) forest with a Landsat Thematic Mapper image , 2011 .

[24]  W. Jin,et al.  A new classifier for remote sensing data classification : Partial Least-Squares , 2008, 2008 International Workshop on Earth Observation and Remote Sensing Applications.

[25]  Piermaria Corona,et al.  Non-parametric and parametric methods using satellite images for estimating growing stock volume in alpine and Mediterranean forest ecosystems , 2008 .

[26]  Jorge M. Palmeirim,et al.  Mapping Mediterranean scrub with satellite imagery: biomass estimation and spectral behaviour , 2004 .

[27]  Risk Assessment, Risk Management & Risk Communication , 2004 .

[28]  Barbara Koch,et al.  An efficient regression strategy for extracting forest biomass information from satellite sensor data , 2005 .

[29]  C. Kleinn,et al.  Estimating aboveground carbon in a catchment of the Siberian forest tundra: Combining satellite imagery and field inventory , 2009 .

[30]  C. Woodcock,et al.  Classification and Change Detection Using Landsat TM Data: When and How to Correct Atmospheric Effects? , 2001 .