Formal control techniques for power-performance management

These techniques determine when to speed up a processor to reach performance targets and when to slow it down to save energy. They use dynamic voltage and frequency scaling to balance speed and avoid worst case frequency limitations for both multiple-clock-domain and chip multiprocessors.

[1]  Ulrich Kremer,et al.  The design, implementation, and evaluation of a compiler algorithm for CPU energy reduction , 2003, PLDI '03.

[2]  Diana Marculescu On the Use of Microarchitecture-Driven Dynamic Voltage Scaling , 2000 .

[3]  Michael L. Scott,et al.  Profile-based dynamic voltage and frequency scaling for a multiple clock domain microprocessor , 2003, ISCA '03.

[4]  Margaret Martonosi,et al.  XTREM: a power simulator for the Intel XScale® core , 2004, LCTES '04.

[5]  A. TUSTIN,et al.  Automatic Control Systems , 1950, Nature.

[6]  Emil Talpes,et al.  A critical analysis of application-adaptive multiple clock processors , 2003, ISLPED '03.

[7]  Kevin Skadron,et al.  Control-theoretic dynamic frequency and voltage scaling , 2002 .

[8]  DAVID G. KENDALL,et al.  Introduction to Mathematical Statistics , 1947, Nature.

[9]  Margaret Martonosi,et al.  Voltage and frequency control with adaptive reaction time in multiple-clock-domain processors , 2005, 11th International Symposium on High-Performance Computer Architecture.

[10]  Kevin Skadron,et al.  Control-theoretic techniques and thermal-RC modeling for accurate and localized dynamic thermal management , 2002, Proceedings Eighth International Symposium on High Performance Computer Architecture.

[11]  Sharad Malik,et al.  Orion: a power-performance simulator for interconnection networks , 2002, MICRO.

[12]  Kevin Skadron,et al.  Control-theoretic dynamic frequency and voltage scaling for multimedia workloads , 2002, CASES '02.

[13]  Margaret Martonosi,et al.  Formal online methods for voltage/frequency control in multiple clock domain microprocessors , 2004, ASPLOS XI.

[14]  Margaret Martonosi,et al.  Wattch: a framework for architectural-level power analysis and optimizations , 2000, Proceedings of 27th International Symposium on Computer Architecture (IEEE Cat. No.RS00201).

[15]  Michael L. Scott,et al.  Dynamic frequency and voltage control for a multiple clock domain microarchitecture , 2002, MICRO.

[16]  Alan Jay Smith,et al.  Improving dynamic voltage scaling algorithms with PACE , 2001, SIGMETRICS '01.

[17]  Margaret Martonosi,et al.  Coordinated, distributed, formal energy management of chip multiprocessors , 2005, ISLPED '05. Proceedings of the 2005 International Symposium on Low Power Electronics and Design, 2005..

[18]  Diana Marculescu,et al.  Power efficiency of voltage scaling in multiple clock, multiple voltage cores , 2002, ICCAD 2002.

[19]  Margaret Martonosi,et al.  Hardware-modulated parallelism in chip multiprocessors , 2005, CARN.

[20]  Michael L. Scott,et al.  Energy-efficient processor design using multiple clock domains with dynamic voltage and frequency scaling , 2002, Proceedings Eighth International Symposium on High Performance Computer Architecture.

[21]  Anish Muttreja,et al.  Automated Energy/Performance Macromodeling of Embedded Software , 2004, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[22]  Karl Johan Åström,et al.  Adaptive Control , 1989, Embedded Digital Control with Microcontrollers.

[23]  Sharad Malik,et al.  Compile-time dynamic voltage scaling settings: opportunities and limits , 2003, PLDI '03.

[24]  Todd M. Austin,et al.  The SimpleScalar tool set, version 2.0 , 1997, CARN.

[25]  Anish Muttreja,et al.  Hybrid simulation for embedded software energy estimation , 2005, Proceedings. 42nd Design Automation Conference, 2005..