The structure, device physics, and material properties of thin film electroluminescent displays

Abstract Thin film electroluminescent (TFEL) displays are complex optoelectronic devices with challenging material requirements. The multilayer device structure includes two electrodes (one metallic and one transparent), two insulators, and a semiconducting ‘phosphor’ layer. Each layer has unique electronic and optical properties that must be satisfied for device operation. In this article, we review the device structure, the electrical and optical device physics, and the material properties of TFEL displays. Particular attention is given to the phosphor layer properties and the radiative recombination phenomenon that is responsible for luminescence. The current status of the red, green, blue and white TFEL phosphors is also reviewed, and the current and future applications are discussed.

[1]  E. Bringuier Electron multiplication in ZnS‐type electroluminescent devices , 1990 .

[2]  K. Brennan Theory of high-field electronic transport in bulk ZnS and ZnSe , 1988 .

[3]  J. Pople,et al.  Approximate Self‐Consistent Molecular‐Orbital Theory. V. Intermediate Neglect of Differential Overlap , 1967 .

[4]  H. Schock,et al.  High efficiency SrS,SrSe:CeCl3 based thin film electroluminescent devices , 1992 .

[5]  J. Kane,et al.  Electroluminescence and Photoluminescence of Cerium‐Activated Alkaline Earth Thiogallate Thin Films and Devices , 1994 .

[6]  N. Yamashita,et al.  Photoluminescence Spectra and Vibrational Structures of the SrS : Ce3 + and SrSe : Ce3 + Phosphors , 1987 .

[7]  D. Askeland,et al.  The science and engineering of materials , 1984 .

[8]  A. R. Kmetz,et al.  International display research conference: Cherry Hill, New Jersey, USA, 19–21 October 1982 , 1983 .

[9]  T. Yoshimi,et al.  ZnS:TbOF Thin-Film Green Electroluminescent Panels Fabricated by Two-Target Sputtering , 1989 .

[10]  Yoshimasa A. Ono,et al.  Electroluminescent Displays , 1995 .

[11]  E. Bringuier Impact excitation in ZnS‐type electroluminescence , 1991 .

[12]  G. Mueller,et al.  Physics and technology of thin film electroluminescent displays , 1991 .

[13]  Paul H. Holloway,et al.  Materials Used in Electroluminescent Displays , 1996 .

[14]  Lawrence E. Tannas,et al.  Flat-Panel Displays and Crts , 1985 .

[15]  T. Peters,et al.  Luminescence and Structural Properties of Thiogallate Phosphors Ce+3 and Eu+2‐Activated Phosphors. Part I , 1972 .

[16]  Nobuhiko Yamashita,et al.  Photoluminescence Spectra of Eu2+ Centers in Ca(S, Se):Eu and Sr(S, Se):Eu , 1995 .

[17]  Mark A. Rodriguez,et al.  Luminescence, absorption, and site symmetry of Ce activated SrGa2S4 phosphors , 1997 .

[18]  I. I. Sobelʹman,et al.  Atomic spectra and radiative transitions , 1979 .

[19]  R. Mach,et al.  Ballistic transport and electroluminescence in IIB–VI and IIA–VI compounds , 1990 .

[20]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[21]  K. Fujimoto,et al.  Improvement of crystallographic and electroluminescent characteristics of SrS:Ce thin film devices by post‐deposition annealing in Ar‐S atmosphere , 1995 .

[22]  M. Gerloch,et al.  Ligand-Field Parameters , 1973 .

[23]  Y. Hamakawa,et al.  Effects of oxygen on electroluminescent characteristics of ZnS:TbOF and ZnS:TmOF devices , 1992 .

[24]  E. Bringuier TENTATIVE ANATOMY OF ZNS-TYPE ELECTROLUMINESCENCE , 1994 .

[25]  T. E. Peters Luminescent Properties of Thiogallate Phosphors II . Ce3+‐Activated Phosphors for Flying Spot Scanner Applications , 1972 .

[26]  K. Chopra,et al.  Transparent conductors—A status review , 1983 .

[27]  Joseph A. Castellano,et al.  Handbook of display technology , 1992 .

[28]  Stephen M. Goodnick,et al.  Monte Carlo simulation of electron transport in alternating-current thin-film electroluminescent devices , 1993 .

[29]  J. Duffy,et al.  Bonding, Energy Levels and Bands in Inorganic Solids , 1990 .