Some Groups Having Only Elementary Actions on Metric Spaces with Hyperbolic Boundaries

AbstractWe study isometric actions of certain groups on metric spaces with hyperbolic-type bordifications. The class of groups considered includes SLn(ℤ), Artin braid groups and mapping class groups of surfaces (except the lower rank ones). We prove that in various ways such actions must be elementary. Most of our results hold for non-locally compact spaces and extend what is known for actions on proper CAT(-1) and Gromov hyperbolic spaces. We also show that SLn(ℤ) for n≥ 3 cannot act on a visibility space X without fixing a point in $$\overline X $$ . Corollaries concern Floyd's group completion, linear actions on strictly convex cones, and metrics on the moduli spaces of compact Riemann surfaces. Some remarks on bounded generation are also included.

[1]  A. Lubotzky,et al.  Superrigidity for the commensurability group of tree lattices , 1994 .

[2]  La Harpe,et al.  Topics in Geometric Group Theory , 2000 .

[3]  Alan F. Beardon,et al.  The dynamics of contractions , 1997, Ergodic Theory and Dynamical Systems.

[4]  Gregory Margulis,et al.  A Multiplicative Ergodic Theorem and Nonpositively Curved Spaces , 1999 .

[5]  M. Bridson,et al.  Metric Spaces of Non-Positive Curvature , 1999 .

[6]  Hyman Bass,et al.  Solution of the congruence subgroup problem for SLn (n ≥ 3) and Sp2n (n ≥ 2) , 1967 .

[7]  Hyman Bass,et al.  Algebraic K-theory , 1968 .

[8]  J. Humphreys Reflection groups and coxeter groups , 1990 .

[9]  Gaven Martin,et al.  Discrete Quasiconformal Groups I , 1987 .

[10]  M. Gromov,et al.  Rigidity of lattices: An introduction , 1991 .

[11]  A. Lubotzky,et al.  Rank-1 phenomena for mapping class groups , 2001 .

[12]  A. Karlsson Boundaries and random walks on finitely generated infinite groups , 2003 .

[13]  W. Floyd Group completions and Furstenberg boundaries: Rank one , 1984 .

[14]  G. Keller,et al.  BOUNDED ELEMENTARY GENERATION OF SL,n (0) , 1983 .

[15]  O. I. Tavgen' BOUNDED GENERATION OF CHEVALLEY GROUPS OVER RINGS OF ALGEBRAIC S-INTEGERS , 1991 .

[16]  Graham A. Niblo,et al.  Asymptotic invariants of infinite groups , 1993 .

[17]  A. Valette,et al.  Sous-groupes libres dans les groupes d’automorphismes d’arbres , 1991 .

[18]  Y. Watatani Property T of Kazhdan implies property FA of Serre , 1982 .

[19]  Yair N. Minsky,et al.  Geometry of the complex of curves I: Hyperbolicity , 1998, math/9804098.

[20]  Yehuda Shalom,et al.  Bounded generation and Kazhdan’s property (T) , 1999 .

[21]  Jacques Tits,et al.  A “theorem of Lie-Kolchin” for trees , 1977 .

[22]  Karen Vogtmann,et al.  A group theoretic criterion for property FA , 1996 .

[23]  N. Monod,et al.  Cocycle superrigidity and bounded cohomology for negatively curved spaces , 2004 .

[24]  C. McMullen The moduli space of Riemann surfaces is Kähler hyperbolic , 2000, math/0010022.

[25]  The Poisson formula for groups with hyperbolic properties , 1998, math/9802132.

[26]  Roger C. Alperin Locally compact groups acting on trees and propertyT , 1982 .

[27]  Anders Karlsson,et al.  Non-expanding maps and Busemann functions , 2001, Ergodic Theory and Dynamical Systems.

[28]  K. Fujiwara On Isometric Actions of SL(n,Z) on Three-Dimensional Visibility Manifolds , 1999 .

[29]  Yan Gao Superrigidity for homomorphisms into isometry groups of CAT(−1) spaces , 1997 .

[30]  M. Burger,et al.  CAT(-1)-spaces, divergence groups and their commensurators , 1996 .

[31]  Sergei Ivanovich Adian,et al.  On Bounded Generation of SLN(Z) , 1992, Int. J. Algebra Comput..

[32]  Wolfgang Woess,et al.  Fixed sets and free subgroups of groups acting on metric spaces , 1993 .

[33]  Yehuda Shalom,et al.  Rigidity of commensurators and irreducible lattices , 2000 .

[34]  B. Bowditch Convergence groups and configuration spaces , 1999 .