Compressive deformation behavior of Mg and Mg/(Y2O3 + Ni) nanocomposites

[1]  T. Srivatsan,et al.  Investigating influence of hybrid (yttria + copper) nanoparticulate reinforcements on microstructural development and tensile response of magnesium , 2010 .

[2]  M. Gupta,et al.  Effect of heating rate during hybrid microwave sintering on the tensile properties of magnesium and Mg/Y2O3 nanocomposite , 2008 .

[3]  M. Gupta,et al.  Enhancing compressive response of AZ31B magnesium alloy using alumina nanoparticulates , 2008 .

[4]  Wei Liu,et al.  Microtexture evolution via deformation twinning and slip during compression of magnesium alloy AZ31 , 2008 .

[5]  H. Cai,et al.  Synthesis and compressive deformation of rapidly solidified magnesium alloy and composites reinforced by SiCp , 2008 .

[6]  M. Gupta,et al.  Improving mechanical properties of magnesium using nano-yttria reinforcement and microwave assisted powder metallurgy method , 2007 .

[7]  Sie Chin Tjong,et al.  Novel Nanoparticle‐Reinforced Metal Matrix Composites with Enhanced Mechanical Properties , 2007 .

[8]  E. Evangelista,et al.  Strengthening in a WE54 magnesium alloy containing SiC particles , 2007 .

[9]  W. Wong,et al.  Development of Mg/Cu nanocomposites using microwave assisted rapid sintering , 2007 .

[10]  J. C. Huang,et al.  The role of twinning and untwinning in yielding behavior in hot-extruded Mg–Al–Zn alloy , 2007 .

[11]  N. Ramakrishnan,et al.  Effect of SiC concentration and strain rate on the compressive deformation behaviour of 2014Al-SiCp composite , 2006 .

[12]  A. Taşdemirci,et al.  Effect of strain rate on the compressive mechanical behavior of a continuous alumina fiber reinforced ZE41A magnesium alloy based composite , 2006 .

[13]  G. Garcés,et al.  Effect of volume fraction and particle size on the microstructure and plastic deformation of Mg–Y2O3 composites , 2006 .

[14]  Wei Zhang,et al.  Titanium alloy reinforced magnesium matrix composite with improved mechanical properties , 2006 .

[15]  M. Gupta,et al.  Development of novel carbon nanotube reinforced magnesium nanocomposites using the powder metallurgy technique , 2006 .

[16]  C. Tomé,et al.  Internal strain and texture evolution during deformation twinning in magnesium , 2005 .

[17]  G. Garcés,et al.  Effect of the extrusion texture on the mechanical behaviour of Mg–SiCp composites , 2005 .

[18]  G. Gottstein,et al.  Texture effects on plastic deformation of magnesium , 2005 .

[19]  M. Gupta,et al.  Enhancing Overall Mechanical Performance of Metallic Materials using Two-directional Microwave Assisted Rapid Sintering , 2005 .

[20]  M. Gupta,et al.  Development of high performance magnesium nano-composites using nano-Al2O3 as reinforcement , 2005 .

[21]  M. Barnett,et al.  Influence of grain size on the compressive deformation of wrought Mg–3Al–1Zn , 2004 .

[22]  P. Uggowitzer,et al.  Mechanical anisotropy of extruded Mg-6% Al-1% Zn alloy , 2004 .

[23]  C. Tomé,et al.  Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y , 2001 .

[24]  D. Božić,et al.  The influence of SiC particles on the compressive properties of metal matrix composites , 2001 .

[25]  M. Barnett Influence of deformation conditions and texture on the high temperature flow stress of magnesium AZ31 , 2001 .

[26]  H. Ferkel,et al.  Magnesium strengthened by SiC nanoparticles , 2001 .

[27]  H. Maier,et al.  MODELING THE DEFORMATION BEHAVIOR OF HADFIELD STEEL SINGLE AND POLYCRYSTALS DUE TO TWINNING AND SLIP , 2000 .

[28]  D. Dunand,et al.  Microstructure and mechanical properties of magnesium containing high volume fractions of yttria dispersoids , 2000 .

[29]  D. Lloyd Particle reinforced aluminium and magnesium matrix composites , 1994 .

[30]  C. Friend,et al.  Comparison of compressive and tensile properties of magnesium based metal matrix composites , 1993 .

[31]  S. Morozumi,et al.  {112̄2}〈1123〉 Slip system in magnesium , 1973 .