Tractable Fragments of Fuzzy Qualitative Algebra

Abstract In this paper we study the computational complexity of Fuzzy Qualitative Temporal Algebra (QA fuz ), a framework that combines qualitative temporal constraints between points and intervals, and allows modelling vagueness and uncertainty. Its tractable fragments can be identified by generalizing the results obtained for crisp Constraint Satisfaction Problems (CSPs) to fuzzy CSPs (FCSPs); to do this, we apply a general methodology based on the notion of α-cut. In particular, the results concerning the tractability of Qualitative Algebra QA, obtained in a recent study by different authors, can be extended to identify the tractable algebras of the fuzzy Qualitative Algebra QA fuz in such a way that the obtained set is maximal, namely any maximal tractable fuzzy algebra belongs to this set.

[1]  Bernhard Nebel,et al.  Reasoning about temporal relations: a maximal tractable subclass of Allen's interval algebra , 1994, JACM.

[2]  Didier Dubois,et al.  Possibility theory in constraint satisfaction problems: Handling priority, preference and uncertainty , 1996, Applied Intelligence.

[3]  Peter Jeavons,et al.  Reasoning about temporal relations: The tractable subalgebras of Allen's interval algebra , 2003, JACM.

[4]  Rina Dechter,et al.  Temporal Constraint Networks , 1989, Artif. Intell..

[5]  Henry A. Kautz,et al.  Constraint propagation algorithms for temporal reasoning: a revised report , 1989 .

[6]  Itay Meiri,et al.  Combining Qualitative and Quantitative Constraints in Temporal Reasoning , 1991, Artif. Intell..

[7]  Massimiliano Giacomin,et al.  From Crisp to Fuzzy Constraint Networks , 2001 .

[8]  Anthony G. Cohn,et al.  A Spatial Logic based on Regions and Connection , 1992, KR.

[9]  Peter van Beek,et al.  Exact and approximate reasoning about temporal relations 1 , 1990, Comput. Intell..

[10]  Hans W. Guesgen,et al.  Spatial and temporal reasoning: Guest Editorial , 2004 .

[11]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[12]  Peter Jonsson,et al.  Complexity classification in qualitative temporal constraint reasoning , 2004, Artif. Intell..

[13]  Christer Bäckström,et al.  Computational Complexity of Relating Time Points with Intervals , 1999, Artif. Intell..

[14]  Bernhard Nebel,et al.  On the Complexity of Qualitative Spatial Reasoning: A Maximal Tractable Fragment of the Region Connection Calculus , 1999, Artif. Intell..

[15]  Anna Maria Di Sciullo,et al.  Natural Language Understanding , 2009, SoMeT.

[16]  Massimiliano Giacomin,et al.  The algebra IAfuz: a framework for qualitative fuzzy temporal reasoning , 2006, Artif. Intell..

[17]  James F. Allen Natural language understanding (2nd ed.) , 1995 .

[18]  Jochen Renz,et al.  Maximal Tractable Fragments of the Region Connection Calculus: A Complete Analysis , 1999, IJCAI.

[19]  Massimiliano Giacomin,et al.  Fuzzy Extensions of Qualitative Algebra Tractable Fragments , 2007, IJCAI 2007.