Heuristic for maximum matching in directed complex networks

Determining maximum matching in any network has always been a problem of immense concern. Its solution is a necessary requirement in structural control theory for controlling real world complex networks. The prevalent classical approach through the Hopcroft-Karp algorithm and other proposed algorithms require the determination of the bipartite equivalent graph (i.e., network), which belongs to the NP-complete class of problems. In this article, we develop a degree-first greedy search algorithm to determine maximum matching in unipartite graphs without determining its bipartite equivalent. Thus this classical problem of the NP-Complete class can be solved using the heuristic, with reduced complexity. This algorithm can be efficiently used to find maximum matching in most of the real world complex networks which follow Erdos-Rényi model. Simulation results obtained using our heuristic show that dense and homogenous networks can be controlled with fewer controller nodes popularly termed as driver nodes, compared to the sparse inhomogeneous networks.

[1]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[2]  Albert-László Barabási,et al.  Controllability of complex networks , 2011, Nature.

[3]  R. Kálmán Mathematical description of linear dynamical systems , 1963 .

[4]  Joseph Christmas,et al.  The Decade and beyond , 1991 .

[5]  Massimo Marchiori,et al.  Error and attacktolerance of complex network s , 2004 .

[6]  Albert-László Barabási,et al.  Scale-Free Networks: A Decade and Beyond , 2009, Science.

[7]  Andrei Z. Broder,et al.  Graph structure in the Web , 2000, Comput. Networks.

[8]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[9]  Noah J. Cowan,et al.  Nodal Dynamics, Not Degree Distributions, Determine the Structural Controllability of Complex Networks , 2011, PloS one.

[10]  Michalis Faloutsos,et al.  On power-law relationships of the Internet topology , 1999, SIGCOMM '99.

[11]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[12]  Lenka Zdeborová,et al.  The number of matchings in random graphs , 2006, ArXiv.

[13]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[14]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[15]  T. Masaki Structure and Dynamics , 2002 .

[16]  T. S. Evans,et al.  Complex networks , 2004 .

[17]  Martin T. Dove Structure and Dynamics , 2003 .

[18]  Ching-tai Lin Structural controllability , 1974 .

[19]  Christian Callegari,et al.  Advances in Computing, Communications and Informatics (ICACCI) , 2015 .

[20]  Alessandro Panconesi,et al.  On the Distributed Complexity of Computing Maximal Matchings , 1997 .

[21]  Shilpa Chakravartula,et al.  Complex Networks: Structure and Dynamics , 2014 .

[22]  ZVI GALIL,et al.  Efficient algorithms for finding maximum matching in graphs , 1986, CSUR.

[23]  B. Bollobás The evolution of random graphs , 1984 .

[24]  Guido Caldarelli,et al.  Scale-Free Networks , 2007 .

[25]  S. Strogatz Exploring complex networks , 2001, Nature.