Nonparametric Bayesian Models for Markov Jump Processes

Markov jump processes (MJPs) have been used as models in various fields such as disease progression, phylogenetic trees, and communication networks. The main motivation behind this thesis is the application of MJPs to data modeled as having complex latent structure. In this thesis we propose a nonparametric prior, the gamma-exponential process (GEP), over MJPs. Nonparametric Bayesian models have recently attracted much attention in the statistics community, due to their flexibility, adaptability, and usefulness in analyzing complex real world datasets. The GEP is a prior over infinite rate matrices which characterize an MJP; this prior can be used in Bayesian models where an MJP is imposed on the data but the number of states of the MJP is unknown in advance. We show that the GEP model we propose has some attractive properties such as conjugacy and simple closed-form predictive distributions. We also introduce the hierarchical version of the GEP model; sharing statistical strength can be considered as the main motivation behind the hierarchical model. We show that our hierarchical model admits efficient inference algorithms. We introduce two inference algorithms: 1) a “basic” particle Markov chain Monte Carlo (PMCMC) algorithm which is an MCMC algorithm with sequences proposed by a sequential Monte Carlo (SMC) algorithm; 2) a modified version of this PMCPC algorithm with an “improved” SMC proposal. Finally, we demonstrate the algorithms on the problems of estimating disease progression in multiple sclerosis and RNA evolutionary modeling. In both domains, we found that our model outperformed the standard rate matrix estimation approach.

[1]  Adrian E. Raftery,et al.  [Practical Markov Chain Monte Carlo]: Comment: One Long Run with Diagnostics: Implementation Strategies for Markov Chain Monte Carlo , 1992 .

[2]  A. Doucet,et al.  Particle Markov chain Monte Carlo methods , 2010 .

[3]  Philip Heidelberger,et al.  Simulation Run Length Control in the Presence of an Initial Transient , 1983, Oper. Res..

[4]  Daniel Dufresne,et al.  G distributions and the beta-gamma algebra , 2010 .

[5]  Donald F. Towsley,et al.  Continuous-time hidden Markov models for network performance evaluation , 2002, Perform. Evaluation.

[6]  David Haussler,et al.  Combining Phylogenetic and Hidden Markov Models in Biosequence Analysis , 2004, J. Comput. Biol..

[7]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[8]  J. E. Griffin,et al.  Order-Based Dependent Dirichlet Processes , 2006 .

[9]  Dirk P. Kroese,et al.  Handbook of Monte Carlo Methods , 2011 .

[10]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[11]  O. Gascuel,et al.  A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. , 2003, Systematic biology.

[12]  Jim E. Griffin,et al.  Stick-breaking autoregressive processes , 2011 .

[13]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[14]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[15]  S. MacEachern Decision Theoretic Aspects of Dependent Nonparametric Processes , 2000 .

[16]  Michael I. Jordan,et al.  Learning Multiscale Representations of Natural Scenes Using Dirichlet Processes , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[17]  Eric P. Xing,et al.  Hidden Markov Dirichlet process: modeling genetic inference in open ancestral space , 2007 .

[18]  Andrew C Titman,et al.  Semi‐Markov Models with Phase‐Type Sojourn Distributions , 2010, Biometrics.

[19]  Michael I. Jordan,et al.  An HDP-HMM for systems with state persistence , 2008, ICML '08.

[20]  D. Dunson,et al.  The local Dirichlet process , 2011, Annals of the Institute of Statistical Mathematics.

[21]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[22]  M. Chial,et al.  in simple , 2003 .

[23]  P S Albert,et al.  A Markov model for sequences of ordinal data from a relapsing-remitting disease. , 1994, Biometrics.

[24]  B. Bollobás The evolution of random graphs , 1984 .

[25]  John Geweke,et al.  Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments , 1991 .

[26]  D. Dunson Bayesian dynamic modeling of latent trait distributions. , 2006, Biostatistics.

[27]  A. Gelfand,et al.  The Nested Dirichlet Process , 2008 .

[28]  R. Rudick,et al.  Use of the brain parenchymal fraction to measure whole brain atrophy in relapsing-remitting MS , 1999, Neurology.

[29]  Rachel J. Mackay,et al.  Estimating the order of a hidden markov model , 2002 .

[30]  J. Griffin The Ornstein–Uhlenbeck Dirichlet process and other time-varying processes for Bayesian nonparametric inference , 2011 .

[31]  Aarnout Brombacher,et al.  Probability... , 2009, Qual. Reliab. Eng. Int..

[32]  Nan Yu,et al.  The Comparative RNA Web (CRW) Site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs , 2002, BMC Bioinformatics.

[33]  J. Doob Markoff chains—denumerable case , 1945 .

[34]  J. Pitman Combinatorial Stochastic Processes , 2006 .

[35]  Micha Mandel,et al.  Estimating disease progression using panel data. , 2010, Biostatistics.

[36]  Michael I. Jordan,et al.  Hierarchical Dirichlet Processes , 2006 .

[37]  Randolph D. Nelson,et al.  Probability, stochastic processes, and queueing theory - the mathematics of computer performance modeling , 1995 .

[38]  M. R. Leadbetter Poisson Processes , 2011, International Encyclopedia of Statistical Science.

[39]  Carl E. Rasmussen,et al.  Factorial Hidden Markov Models , 1997 .

[40]  G. Grimmett,et al.  Probability and random processes , 2002 .

[41]  M. Kimura A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences , 1980, Journal of Molecular Evolution.

[42]  Alexandre Bureau,et al.  Applications of continuous time hidden Markov models to the study of misclassified disease outcomes , 2003, Statistics in medicine.

[43]  J. Sethuraman A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .

[44]  Rebecca A Betensky,et al.  Estimating time-to-event from longitudinal ordinal data using random-effects Markov models: application to multiple sclerosis progression. , 2008, Biostatistics.

[45]  M. Escobar,et al.  Markov Chain Sampling Methods for Dirichlet Process Mixture Models , 2000 .

[46]  A. Hobolth,et al.  Statistical Applications in Genetics and Molecular Biology Statistical Inference in Evolutionary Models of DNA Sequences via the EM Algorithm , 2011 .