Analytical Models for the 2DEG Density, AlGaN Layer Carrier Density, and Drain Current for AlGaN/GaN HEMTs

Here, we report a unified analytical model for the 2-D electron gas density (<inline-formula> <tex-math notation="LaTeX">${n}_{S}$ </tex-math></inline-formula>) in AlGaN/GaN HEMTs, considering the carriers induced in the AlGaN layer (<inline-formula> <tex-math notation="LaTeX">${n}_{B}$ </tex-math></inline-formula>) to satisfy charge balance at high gate bias. To extend the validity of our model for gate voltages below the off voltage, we have merged a popular subthreshold model to our model using an interpolation function. Our model for <inline-formula> <tex-math notation="LaTeX">${n}_{B}$ </tex-math></inline-formula> is fully analytical, without any explicit dependence on <inline-formula> <tex-math notation="LaTeX">${n}_{S}$ </tex-math></inline-formula>, and is a function only of the gate voltage, which to the best of our knowledge, is the first such report. The model results show a very good match with published results and experimental data reported in the literature. These models are subsequently used in a charge-based drain current model, developed under the drift-diffusion framework. In order to make our model valid for small-dimension devices, several second-order effects have been included in our drain current model. The model results for the drain current show an excellent match with the experimental data reported in the literature, for channel length varying from <inline-formula> <tex-math notation="LaTeX">$1~\mu \text{m}$ </tex-math></inline-formula> to 125 nm. Also, it shows the first-order continuity of the drain current with respect to the bias voltages, thus making it suitable for use in circuit simulators.

[1]  Yan Wang,et al.  An analytical model for current–voltage characteristics of AlGaN/GaN HEMTs in presence of self-heating effect , 2010 .

[2]  Juin J. Liou,et al.  An Explicit Surface Potential Calculation and Compact Current Model for AlGaN/GaN HEMTs , 2015, IEEE Electron Device Letters.

[3]  Robert J. Trew,et al.  SiC and GaN transistors - is there one winner for microwave power applications? , 2002, Proc. IEEE.

[4]  Thomas Zimmer,et al.  Robust Surface-Potential-Based Compact Model for GaN HEMT IC Design , 2013, IEEE Transactions on Electron Devices.

[5]  J. S. Blakemore Approximations for Fermi-Dirac integrals, especially the function F12(η) used to describe electron density in a semiconductor , 1982 .

[6]  S. Pimputkar,et al.  Gallium nitride , 2019, Single Crystals of Electronic Materials.

[7]  Amitava DasGupta,et al.  A Continuous Analytical Model for 2-DEG Charge Density in AlGaN/GaN HEMTs Valid for All Bias Voltages , 2014, IEEE Transactions on Electron Devices.

[8]  T. Fjeldly,et al.  A Physics-Based Analytical Model for 2DEG Charge Density in AlGaN/GaN HEMT Devices , 2011, IEEE Transactions on Electron Devices.

[9]  Dimitri A. Antoniadis,et al.  MIT virtual source GaNFET‐high voltage (MVSG‐HV) model: A physics based compact model for HV‐GaN HEMTs , 2014 .

[10]  Yan Wang,et al.  Physics-Based Compact Model for AlGaN/GaN MODFETs With Close-Formed $I$$V$ and $C$, 2009, IEEE Transactions on Electron Devices.

[11]  Pilsoon Choi,et al.  GaNFET compact model for linking device physics, high voltage circuit design and technology optimization , 2015, 2015 IEEE International Electron Devices Meeting (IEDM).

[12]  Aloke K. Dutta,et al.  Analytical models for the 2DEG concentration and gate leakage current in AlGaN/GaN HEMTs , 2017 .

[13]  D. Delagebeaudeuf,et al.  Metal-(n) AlGaAs-GaAs two-dimensional electron gas FET , 1982, IEEE Transactions on Electron Devices.

[14]  Tor A. Fjeldly,et al.  A physics based compact model of I–V and C–V characteristics in AlGaN/GaN HEMT devices , 2012 .

[15]  Yan Wang,et al.  A Surface-Potential-Based Compact Model for AlGaN/GaN MODFETs , 2011, IEEE Transactions on Electron Devices.

[16]  M. M. Wong,et al.  Radiative recombination of two-dimensional electrons in a modulation-doped Al0.37Ga0.63N/GaN single heterostructure , 1999 .

[17]  William Liu,et al.  MOSFET Models for SPICE Simulation: Including BSIM3v3 and BSIM4 , 2001 .

[18]  L. Tolbert,et al.  WIDE BANDGAP SEMICONDUCTORS FOR UTILITY APPLICATIONS , 2003 .

[19]  Y.-F. Wu,et al.  High Al-content AlGaN/GaN MODFETs for ultrahigh performance , 1998, IEEE Electron Device Letters.

[20]  N. Dasgupta,et al.  A Compact Model of Drain Current for GaN HEMTs Based on 2-DEG Charge Linearization , 2016, IEEE Transactions on Electron Devices.

[21]  H. B. Wallace,et al.  Impact of wide bandgap microwave devices on DoD systems , 2002, Proc. IEEE.

[22]  K. Webb,et al.  A temperature-dependent nonlinear analytic model for AlGaN-GaN HEMTs on SiC , 2004, IEEE Transactions on Microwave Theory and Techniques.

[23]  Manfred Berroth,et al.  Advanced large-signal modeling of GaN-HEMTs , 2002, Proceedings. IEEE Lester Eastman Conference on High Performance Devices.

[24]  S. Khandelwal,et al.  Analytical Modeling of Surface-Potential and Intrinsic Charges in AlGaN/GaN HEMT Devices , 2012, IEEE Transactions on Electron Devices.

[25]  G.N. Maracas,et al.  An analytical expression for Fermi level versus sheet carrier concentration for HEMT modeling , 1988, IEEE Electron Device Letters.

[26]  Yuji Ando,et al.  100 W C-band single-chip GaN FET power amplifier , 2006 .

[27]  T. Fjeldly,et al.  Compact Charge-Based Physical Models for Current and Capacitances in AlGaN/GaN HEMTs , 2013, IEEE Transactions on Electron Devices.

[28]  Joan M. Redwing,et al.  Measurement of drift mobility in AlGaN/GaN heterostructure field-effect transistor , 1999 .

[29]  Umesh K. Mishra,et al.  GaN-Based RF Power Devices and Amplifiers , 2008, Proceedings of the IEEE.

[30]  P. Kozodoy,et al.  Bias dependent microwave performance of AlGaN/GaN MODFET's up to 100 V , 1997, IEEE Electron Device Letters.

[31]  Y. Tsividis Operation and modeling of the MOS transistor , 1987 .