Application of a SPH depth-integrated model to landslide run-out analysis

Hazard and risk assessment of landslides with potentially long run-out is becoming more and more important. Numerical tools exploiting different constitutive models, initial data and numerical solution techniques are important for making the expert’s assessment more objective, even though they cannot substitute for the expert’s understanding of the site-specific conditions and the involved processes. This paper presents a depth-integrated model accounting for pore water pressure dissipation and applications both to real events and problems for which analytical solutions exist. The main ingredients are: (i) The mathematical model, which includes pore pressure dissipation as an additional equation. This makes possible to model flowslide problems with a high mobility at the beginning, the landslide mass coming to rest once pore water pressures dissipate. (ii) The rheological models describing basal friction: Bingham, frictional, Voellmy and cohesive-frictional viscous models. (iii) We have implemented simple erosion laws, providing a comparison between the approaches of Egashira, Hungr and Blanc. (iv) We propose a Lagrangian SPH model to discretize the equations, including pore water pressure information associated to the moving SPH nodes.

[1]  J. N. Hutchinson A sliding–consolidation model for flow slides , 1986 .

[2]  M. Biot General Theory of Three‐Dimensional Consolidation , 1941 .

[3]  R. de Boer,et al.  Theory of Porous Media , 2020, Encyclopedia of Continuum Mechanics.

[4]  N R Morgenstern,et al.  Liquefaction flowslides in Rocky Mountain coal mine waste dumps , 1998 .

[5]  Giovanni B. Crosta,et al.  Modelling rock avalanche propagation onto glaciers , 2012 .

[6]  G. Crosta,et al.  Numerical simulation of dry granular flows: From the reproduction of small-scale experiments to the prediction of rock avalanches , 2000 .

[7]  Craig J. Hickey,et al.  Mechanics of porous media , 1994 .

[8]  Oldrich Hungr,et al.  A model for the runout analysis of rapid flow slides, debris flows, and avalanches , 1995 .

[9]  R. Iverson,et al.  Effects of soil aggregates on debris-flow mobilization: Results from ring-shear experiments , 2010 .

[10]  P. Gauer,et al.  Possible erosion mechanisms in snow avalanches , 2004, Annals of Glaciology.

[11]  M. Quecedo,et al.  Modelling tailings dams and mine waste dumps failures , 2002 .

[12]  R. Iverson,et al.  Grain-size segregation and levee formation in geophysical mass flows , 2012 .

[13]  Giovanni B. Crosta,et al.  Numerical modeling of 2‐D granular step collapse on erodible and nonerodible surface , 2009 .

[14]  Pierre-Yves Hicher,et al.  An enhanced constitutive model for crushable granular materials , 2010 .

[15]  O. C. Zienkiewicz,et al.  DRAINED, UNDRAINED, CONSOLIDATING AND DYNAMIC BEHAVIOUR ASSUMPTIONS IN SOILS , 1980 .

[16]  M. Pastor,et al.  Static and dynamic behaviour of soils : a rational approach to quantitative solutions. I. Fully saturated problems , 1990, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[17]  Scott McDougall,et al.  Entrainment of material by debris flows , 2005 .

[18]  Adrian R. Russell,et al.  Crushing of particles in idealised granular assemblies , 2009 .

[19]  M. Pastor,et al.  A depth-integrated viscoplastic model for dilatant saturated cohesive-frictional fluidized mixtures: Application to fast catastrophic landslides , 2009 .

[20]  Nicolas Estrada,et al.  Rock‐and‐soil avalanches: Theory and simulation , 2009 .

[21]  O. Zienkiewicz,et al.  Dynamic behaviour of saturated porous media; The generalized Biot formulation and its numerical solution , 1984 .

[22]  Douglas F. Hambley,et al.  Mechanics of Porous Media , 1996 .

[23]  Christophe Ancey,et al.  Multi-component particle-size segregation in shallow granular avalanches , 2011, Journal of Fluid Mechanics.

[24]  Adrian R. Russell,et al.  PARTICLE CRUSHING AND DEFORMATION BEHAVIOUR , 2010 .

[25]  B. Schrefler,et al.  The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media , 1998 .

[26]  S. Savage,et al.  Particle Segregation in Granular Flows Down Chutes , 2000 .

[27]  Hajime Nakagawa,et al.  Routing Debris Flows with Particle Segregation , 1992 .

[28]  F. Agliardi,et al.  High resolution three-dimensional numerical modelling of rockfalls , 2003 .

[29]  Giovanni B. Crosta,et al.  Numerical modelling of entrainment/deposition in rock and debris-avalanches , 2009 .

[30]  Jean-Pierre Vilotte,et al.  Numerical modeling of self‐channeling granular flows and of their levee‐channel deposits , 2006 .

[31]  J. Vallance,et al.  OBJECTIVE DELINEATION OF LAHAR-INUNDATION HAZARD ZONES , 1998 .

[32]  M. I. Herreros,et al.  Modelling of diffuse failure mechanisms of catastrophic landslides , 2004 .

[33]  Helmut J. Körner,et al.  Reichweite und Geschwindigkeit von Bergstürzen und Fließschneelawinen , 1976 .

[34]  Kolumban Hutter,et al.  Avalanche dynamics: Dynamics of rapid flows of dense granular avalanches , 2016 .

[35]  M. Quecedo,et al.  Numerical modelling of impulse wave generated by fast landslides , 2004 .

[36]  Javier Bonet,et al.  Dynamic refinement and boundary contact forces in SPH with applications in fluid flow problems , 2007 .

[37]  Hydrodynamic model for particle size segregation in granular media , 2002, cond-mat/0202484.

[38]  W. Z. Savage,et al.  Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning , 2008 .

[39]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[40]  Experimental study on the entrainment of bed material into debris flow , 2001 .

[41]  Jordi Corominas,et al.  The angle of reach as a mobility index for small and large landslides , 1996 .

[42]  S. Savage,et al.  The dynamics of avalanches of granular materials from initiation to runout. Part I: Analysis , 1991 .

[43]  E. Toro Shock-Capturing Methods for Free-Surface Shallow Flows , 2001 .

[44]  D. Blackmore,et al.  IUTAM Symposium on Segregation in Granular Flows , 2000 .

[45]  A. Ledesma,et al.  Static and dynamic behaviour of soils: a rational approach to quantitative solutions. II. Semi-saturated problems , 1990, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[46]  Lev S. Tsimring,et al.  Avalanche mobility induced by the presence of an erodible bed and associated entrainment , 2007 .

[47]  Richard M. Iverson,et al.  Flow of variably fluidized granular masses across three‐dimensional terrain: 1. Coulomb mixture theory , 2001 .

[48]  Vincent Guinot,et al.  Godunov-type Schemes: An Introduction for Engineers , 2003 .

[49]  Sivakumar Kulasegaram,et al.  Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations , 2000 .

[50]  W. Haeberli,et al.  Unraveling driving factors for large rock–ice avalanche mobility , 2011 .

[51]  S. Pudasaini A general two-phase debris flow model , 2012 .

[52]  A. Thornton,et al.  A theory for particle size segregation in shallow granular free-surface flows , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[53]  M. Quecedo,et al.  Simple Approximation to Bottom Friction for Bingham Fluid Depth Integrated Models , 2004 .

[54]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[55]  Scott McDougall,et al.  A new continuum dynamic model for the analysis of extremely rapid landslide motion across complex 3D terrain , 2006 .

[56]  Javier Bonet,et al.  A corrected smooth particle hydrodynamics formulation of the shallow-water equations , 2005 .

[57]  P. Frattini,et al.  Validation of semi-empirical relationships for the definition of debris-flow behavior in granular materials , 2003 .

[58]  S. Evans,et al.  The assessment of rockfall hazard at the base of talus slopes , 1993 .

[59]  Eduardo Alonso,et al.  Criteria for rapid sliding II.: Thermo-hydro-mechanical and scale effects in Vaiont case , 2010 .

[60]  O. C. Zienkiewicz,et al.  Adaptive remeshing for compressible flow computations , 1987 .

[61]  M. Quecedo,et al.  Finite element modelling of free surface flows on inclined and curved beds , 2003 .

[62]  O. Hungr,et al.  Numerical modeling of debris avalanche propagation from collapse of volcanic edifices , 2012, Landslides.

[63]  Oldrich Hungr,et al.  Entrainment of debris in rock avalanches: An analysis of a long run-out mechanism , 2004 .

[64]  J. Hutchinson,et al.  Hillslope Form and Process , 1973 .

[65]  M. Pastor,et al.  Numerical simulation of debris flows with the 2D - SPH depth integrated model , 2009 .

[66]  C. F. Lee,et al.  Erosional effects on runout of fast landslides, debris flows , 2006 .

[67]  Richard M. Iverson,et al.  Elementary theory of bed‐sediment entrainment by debris flows and avalanches , 2012 .

[68]  S. Cannon Empirical model for the volume-change behavior of debris flows , 1993 .

[69]  M. Pastor,et al.  A depth‐integrated, coupled SPH model for flow‐like landslides and related phenomena , 2009 .

[70]  A. Tamburrino,et al.  Experimental observations of water‐like behavior of initially fluidized, dam break granular flows and their relevance for the propagation of ash‐rich pyroclastic flows , 2008 .

[71]  Computational Aspects of the Random Choice Method for Shallow Water Equations , 1981 .

[72]  Chen Chen-lung,et al.  DEBRIS-FLOW HAZARDS MITIGATION: MECHANICS, PREDICTION, AND ASSESSMENT , 2007 .

[73]  Wei Hu,et al.  Numerical study of crushable granular materials , 2011 .

[74]  L. George,et al.  A two-phase debris-flow model that includes coupled evolution of volume fractions, granular dilatancy, and pore-fluid pressure , 2011 .

[75]  Long Le,et al.  A two-fluid model for avalanche and debris flows , 2005, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[76]  Marica Pelanti,et al.  A Roe-type scheme for two-phase shallow granular flows over variable topography , 2008 .

[77]  Tadahiko Shiomi,et al.  Practical Programming in Computational Geomechanics: With Special Reference to Earthquake Engineering , 1999 .

[78]  Eduardo Alonso,et al.  Criteria for rapid sliding I. A review of Vaiont case , 2010 .

[79]  P. O. Boks,et al.  Empirical Calculations of Snow–Avalanche Run–out Distance Based on Topographic Parameters , 1980, Journal of Glaciology.

[80]  Nader A. Issa,et al.  Fluid motion generated by impact , 2003 .

[81]  Andrew Kos,et al.  Gravity currents descending a ramp in a stratified tank , 1999, Journal of Fluid Mechanics.

[82]  Robin Fell,et al.  Travel distance angle for "rapid" landslides in constructed and natural soil slopes , 2003 .

[83]  Jey K. Jeyapalan,et al.  Investigation of Flow Failures of Tailings Dams , 1983 .

[84]  S. S. Grigorian,et al.  On Some New Approaches to the Dynamics of Snow Avalanches , 1967 .

[85]  S. Savage,et al.  The motion of a finite mass of granular material down a rough incline , 1989, Journal of Fluid Mechanics.

[86]  Kolumban Hutter,et al.  Gravity-driven free surface flow of granular avalanches over complex basal topography , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[87]  J. Monaghan,et al.  Kernel estimates as a basis for general particle methods in hydrodynamics , 1982 .

[88]  M. Athans,et al.  PART I: ANALYSIS' , 1980 .

[89]  R J Fannin,et al.  An empirical-statistical model for debris flow travel distance , 2001 .

[90]  M. Jakob Debris-flow hazard analysis , 2005 .

[91]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[92]  M. Quecedo,et al.  Mathematical, Constitutive and Numerical Modelling of Catastrophic Landslides and Related Phenomena , 2008 .

[93]  Giovanni B. Crosta,et al.  Complete dynamic modeling calibration for the Thurwieser rock avalanche (Italian Central Alps) , 2008 .

[94]  M. Biot THEORY OF ELASTICITY AND CONSOLIDATION FOR A POROUS ANISOTROPIC SOLID , 1955 .

[95]  O. Hungr,et al.  A model for the analysis of rapid landslide motion across three-dimensional terrain , 2004 .

[96]  P. Heinrich,et al.  Analytical Solution for Testing Debris Avalanche Numerical Models , 2000 .

[97]  H. Norem,et al.  Simulation of Snow-Avalanche Flow in Run-Out Zones , 1989 .