Fractional Brownian motion and data traffic modeling: The other end of the spectrum
暂无分享,去创建一个
[1] Kiyosi Itô,et al. 13. On the Ergodicity of a Certain Stationary Process , 1944 .
[2] R. Adler,et al. The Geometry of Random Fields , 1982 .
[3] R. Ellis,et al. LARGE DEVIATIONS FOR A GENERAL-CLASS OF RANDOM VECTORS , 1984 .
[4] G. Michon,et al. On the multifractal analysis of measures , 1992 .
[5] Walter Willinger,et al. On the self-similar nature of Ethernet traffic , 1993, SIGCOMM '93.
[6] D. Applebaum. Stable non-Gaussian random processes , 1995, The Mathematical Gazette.
[7] Vern Paxson,et al. Empirically derived analytic models of wide-area TCP connections , 1994, TNET.
[8] Ilkka Norros,et al. A storage model with self-similar input , 1994, Queueing Syst. Theory Appl..
[9] J. L. Véhel,et al. Multifractal Analysis of Choquet Capacities : Preliminary Results , 1995 .
[10] R. Peltier,et al. Multifractional Brownian Motion : Definition and Preliminary Results , 1995 .
[11] J. Lévy-Véhel. FRACTAL APPROACHES IN SIGNAL PROCESSING , 1995 .
[12] Walter Willinger,et al. Self-similarity through high-variability: statistical analysis of Ethernet LAN traffic at the source level , 1997, TNET.
[13] Rudolf H. Riedi,et al. An Improved Multifractal Formalism and Self Similar Measures , 1995 .
[14] Azer Bestavros,et al. Self-similarity in World Wide Web traffic: evidence and possible causes , 1996, SIGMETRICS '96.
[15] Heinz-Otto Peitgen,et al. Fractal geometry and analysis : the Mandelbrot festschrift, Curaçao 1995 , 1996 .
[16] Azer Bestavros,et al. Self-similarity in World Wide Web traffic: evidence and possible causes , 1997, TNET.
[17] Rudolf H. Riedi,et al. Multifractal Properties of TCP Traffic: a Numerical Study , 1997 .
[18] Rudolf H. RiediRice. Tcp Traac Is Multifractal: a Numerical Study , 1997 .
[19] Rudolf H. Riedi,et al. Inverse Measures, the Inversion Formula, and Discontinuous Multifractals , 1997 .
[20] Patrice Abry,et al. Wavelet Analysis of Long-Range-Dependent Traffic , 1998, IEEE Trans. Inf. Theory.
[21] Jacques Lévy Véhel,et al. Multifractal Analysis of Choquet Capacities , 1998 .
[22] D. Veitch. Wavelet Analysis of Long Range Dependent Traac , 1998 .