Synthesis and characterization of novel aromatic azo bond-containing pH-sensitive and hydrolytically cleavable IPN hydrogels.

[1]  Dong Wang,et al.  Novel aromatic azo-containing pH-sensitive hydrogels: Synthesis and characterization , 2002 .

[2]  K. Dušek,et al.  Phase transition in swollen gels 31. Swelling and mechanical behaviour of interpenetrating networks composed of poly(1-vinyl-2-pyrrolidone) and polyacrylamide in water/acetone mixtures , 2002 .

[3]  I. Quijada-Garrido,et al.  Thermal properties of cross-linked poly(N-isopropylacrylamide) [P(N-iPAAm)], poly(methacrylic acid) [P(MAA)], their random copolymers [P(N-iPAAm-co-MAA)], and sequential interpenetrating polymer networks (IPNs) , 2002 .

[4]  N. Peppas,et al.  Morphology of poly(methacrylic acid)/poly(N-isopropyl acrylamide) interpenetrating polymeric networks , 2002, Journal of biomaterials science. Polymer edition.

[5]  Claus-Michael Lehr,et al.  Size-Dependent Bioadhesion of Micro- and Nanoparticulate Carriers to the Inflamed Colonic Mucosa , 2001, Pharmaceutical Research.

[6]  M. Akashi,et al.  Design of nanoparticles composed of graft copolymers for oral peptide delivery. , 2001, Advanced drug delivery reviews.

[7]  Miroslava Dušková-Smrčková,et al.  Network structure formation during crosslinking of organic coating systems , 2000 .

[8]  D. Taylor,et al.  Polymer networks: principles of formation, structure and properties , 2000 .

[9]  J. Kopeček,et al.  Novel pH-sensitive hydrogels with adjustable swelling kinetics. , 1998, Biomaterials.

[10]  K. Takada,et al.  Evaluation of intestinal pressure-controlled colon delivery capsule containing caffeine as a model drug in human volunteers. , 1998, Journal of controlled release : official journal of the Controlled Release Society.

[11]  Hamidreza Ghandehari,et al.  Biodegradable and pH sensitive hydrogels: synthesis by a polymer-polymer reaction , 1996 .

[12]  W. Samowitz,et al.  Site-specific drug delivery and penetration enhancement in the gastrointestinal tract , 1995 .

[13]  J. Kopeček,et al.  Degradability of hydrogels containing azoaromatic crosslinks , 1995 .

[14]  Jindrich Kopecek,et al.  Biodegradable and pH-sensitive hydrogels: Synthesis by crosslinking of N,N-dimethylacrylamide copolymer precursors , 1994 .

[15]  D. Klempner,et al.  Interpenetrating Polymer Networks , 1994 .

[16]  J. Kopeček,et al.  Degradation of proteins by guinea pig intestinal enzymes , 1993 .

[17]  K. Ulbrich,et al.  Novel biodegradable hydrogels prepared using the divinylic crosslinking agent N,O-dimethacryloylhydroxylamine. 1. Synthesis and characterisation of rates of gel degradation, and rate of release of model drugs, in vitro and in vivo , 1993 .

[18]  H. Brøndsted,et al.  pH-Sensitive Hydrogels: Characteristics and Potential in Drug Delivery , 1992 .

[19]  Akira Yamamoto,et al.  Penetration and enzymatic barriers to peptide and protein absorption , 1989 .

[20]  S. Hansen,et al.  5-aminosalicylic acid in a slow-release preparation: bioavailability, plasma level, and excretion in humans. , 1982, Gastroenterology.

[21]  K. Ulbrich,et al.  Polymers containing enzymatically degradable bonds. VI. Hydrophilic gels cleavable by chymotrypsin. , 1982, Biomaterials.

[22]  J. Labský,et al.  Aminolyses of monomeric and polymeric 4‐nitrophenyl esters of N‐methacryloylamino acids , 1977 .

[23]  J. Kopeček,et al.  Poly[N-(2-hydroxypropyl)methacrylamide]-iii. Crosslinking copolymerization , 1974 .

[24]  L. Bauer,et al.  The Chemistry of Hydroxamic Acids and N‐Hydroxyimides , 1974 .

[25]  R. Pariser,et al.  A new method for measuring the degree of crosslinking in elastomers , 1960 .

[26]  K. Dušek Network formation in curing of epoxy resins , 1986 .

[27]  K. Ulbrich,et al.  Preparation and properties of poly(N-ethylmethacrylamide) networks , 1977 .

[28]  J. Kopeček,et al.  Poly[N-(2-hydroxypropyl)methacrylamide]—I. Radical polymerization and copolymerization , 1973 .