Electrically Tunable Metal–Semiconductor–Metal Terahertz Metasurface Modulators

We propose metal–semiconductor–metal cavity arrays as active elements of electrically tunable metasurfaces operating in the terahertz spectrum. Their function is based on reverse biasing the Schottky junction formed between top metal strips and the n-type semiconductor buried beneath. A gate bias between the strips and a back metal reflector controls the electron depletion layer thickness thus tuning the Drude permittivity of the cavity array. Using a rigorous multiphysics framework which combines Maxwell equations for terahertz waves and the drift-diffusion model for describing the carrier behavior in the semiconductor, we find a theoretically infinite extinction ratio, insertion loss of around 10%, and picosecond intrinsic switching times at 1 THz, for a structure designed to enter the critical coupling regime once the depletion layer reaches the bottom metal contact. We also show that the proposed modulation concept can be used for devices operating at the higher end of the terahertz spectrum, discussing the limitations on their performance.

[1]  M. K. Hudaita,et al.  Breakdown characteristics of MOVPE grown Si-doped GaAs Schottky diodes , 1999 .

[2]  C. Sirtori,et al.  Strong light-matter coupling in subwavelength metal-dielectric microcavities at terahertz frequencies. , 2009, Physical review letters.

[3]  David A. Ritchie,et al.  All-integrated terahertz modulators , 2017 .

[4]  I. Sagnes,et al.  Optical critical coupling into highly confining metal-insulator-metal resonators , 2013 .

[5]  C. Sirtori,et al.  Ultra-subwavelength resonators for high temperature high performance quantum detectors , 2016 .

[6]  P. Ajayan,et al.  High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures. , 2014, Nano letters.

[7]  Masayoshi Tonouchi,et al.  Cutting-edge terahertz technology , 2007 .

[8]  Lishuang Feng,et al.  High performance metamaterials-high electron mobility transistors integrated terahertz modulator. , 2017, Optics express.

[9]  Ziqiang Yang,et al.  Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure. , 2015, Nano letters.

[10]  Huili Grace Xing,et al.  Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators. , 2012, Nano letters.

[11]  J. Rogers,et al.  GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies , 2010, Nature.

[12]  R. Gajić,et al.  Geometrical scaling and modal decay rates in periodic arrays of deeply subwavelength Terahertz resonators , 2014 .

[13]  T. Itoh,et al.  Metasurface quantum-cascade laser with electrically switchable polarization , 2017 .

[14]  Andrea Alù,et al.  Ultrafast Electrically Tunable Polaritonic Metasurfaces , 2014 .

[15]  C. R. Crowell,et al.  Current transport in metal-semiconductor barriers , 1966 .

[16]  Daniel M. Mittleman,et al.  An electrically driven terahertz metamaterial diffractive modulator with more than 20 dB of dynamic range , 2014 .

[17]  J. Joannopoulos,et al.  Temporal coupled-mode theory for the Fano resonance in optical resonators. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[18]  David Shrekenhamer,et al.  High speed terahertz modulation from metamaterials with embedded high electron mobility transistors. , 2011, Optics express.

[19]  David R. Smith,et al.  Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves , 2008 .

[20]  Carlo Sirtori,et al.  Patch antenna terahertz photodetectors , 2015 .

[21]  Willie J Padilla,et al.  A metamaterial solid-state terahertz phase modulator , 2009 .

[22]  Willie J Padilla,et al.  Active terahertz metamaterial devices , 2006, Nature.

[23]  Goran Isić,et al.  Plasmonic lifetimes and propagation lengths in metallodielectric superlattices , 2014 .

[24]  Shanhui Fan,et al.  Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities , 2004 .

[25]  M. Koch,et al.  Room-temperature operation of an electrically driven terahertz modulator , 2004 .

[26]  R. S. Stepleman,et al.  Optical Properties of Metal-dielectric-metal Microcavities in the Thz Frequency Range References and Links , 2022 .

[27]  Daniel M. Mittleman,et al.  Perspective: Terahertz science and technology , 2017 .

[28]  Philippe Lalanne,et al.  Light Interaction with Photonic and Plasmonic Resonances , 2017, Laser & Photonics Reviews.

[29]  R. Gajić,et al.  Electrically Tunable Critically Coupled Terahertz Metamaterial Absorber Based on Nematic Liquid Crystals , 2015 .

[30]  Emmanouil E. Kriezis,et al.  Silicon-Photonic Electro-Optic Phase Modulators Integrating Transparent Conducting Oxides , 2018, IEEE Journal of Quantum Electronics.

[31]  E. Hendry,et al.  Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy , 2011 .

[32]  H. Haus,et al.  Coupled-mode theory , 1991, Proc. IEEE.

[33]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[34]  David Shrekenhamer,et al.  Liquid crystal tunable metamaterial absorber. , 2012, Physical review letters.

[35]  G. Strasser,et al.  Resonant metamaterial detectors based on THz quantum-cascade structures , 2014, Scientific Reports.

[36]  R. D. Briggs,et al.  A survey of ohmic contacts to III-V compound semiconductors , 1997 .

[37]  Peter Kovesi,et al.  Good Colour Maps: How to Design Them , 2015, ArXiv.

[38]  T. Itoh,et al.  Terahertz Metasurface Quantum-Cascade VECSELs: Theory and Performance , 2017, IEEE Journal of Selected Topics in Quantum Electronics.

[39]  Emmanouil E. Kriezis,et al.  Transparent conducting oxide electro-optic modulators on silicon platforms: A comprehensive study based on the drift-diffusion semiconductor model , 2017 .

[40]  Romeo Beccherelli,et al.  Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals , 2017, Nanotechnology.

[41]  Constantin Bulucea,et al.  Breakdown voltage of diffused epitaxial junctions , 1991 .

[42]  Ali A. Rezazadeh,et al.  Empirical low-field mobility model for III-V compounds applicable in device simulation codes , 2000 .

[43]  M F Crommie,et al.  Optimizing broadband terahertz modulation with hybrid graphene/metasurface structures. , 2015, Nano letters.

[44]  Willie J Padilla,et al.  THz Wave Modulators: A Brief Review on Different Modulation Techniques , 2013 .

[45]  R. J. Bell,et al.  Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. , 1985, Applied optics.

[46]  Gottfried Strasser,et al.  Terahertz phase modulator , 2000 .

[47]  A. A. Anappara,et al.  Electrical control of polariton coupling in intersubband microcavities , 2005 .

[48]  D. J. Lockwood,et al.  Optical phonon frequencies and damping in AlAs, GaP, GaAs, InP, InAs and InSb studied by oblique incidence infrared spectroscopy , 2005 .

[49]  B.J. Baliga,et al.  Breakdown characteristics of gallium arsenide , 1981, IEEE Electron Device Letters.

[50]  Jae-Hyung Jang,et al.  Terahertz Modulator based on Metamaterials integrated with Metal-Semiconductor-Metal Varactors , 2016, Scientific Reports.

[51]  E. Palik,et al.  Gallium Arsenide (GaAs) , 1997 .