Algorithm and sensitivity analysis of information-theoretic ensemble-based observation targeting

This work is funded by NSF CNS-0540331 as part of the DDDAS program with Dr. Frederica Darema as the overall program manager.

[1]  J. Whitaker,et al.  Ensemble Data Assimilation without Perturbed Observations , 2002 .

[2]  Roberto Buizza,et al.  Impact of Ensemble Size on Ensemble Prediction , 1998 .

[3]  A. Genz Numerical Computation of Multivariate Normal Probabilities , 1992 .

[4]  G. Evensen,et al.  Assimilation of Geosat altimeter data for the Agulhas current using the ensemble Kalman filter with , 1996 .

[5]  Craig H. Bishop,et al.  Adaptive sampling with the ensemble transform Kalman filter , 2001 .

[6]  Dacian N. Daescu,et al.  Adaptive observations in the context of 4D-Var data assimilation , 2004 .

[7]  Harshinder Singh,et al.  Estimation of the entropy of a multivariate normal distribution , 2005 .

[8]  T. Palmer,et al.  Singular Vectors, Metrics, and Adaptive Observations. , 1998 .

[9]  Han-Lim Choi,et al.  Ensemble-Based Adaptive Targeting of Mobile Sensor Networks , 2007, 2007 American Control Conference.

[10]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[11]  K. Emanuel,et al.  Optimal Sites for Supplementary Weather Observations: Simulation with a Small Model , 1998 .

[12]  J. Whitaker,et al.  Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter , 2001 .

[13]  M. Grassi,et al.  AIAA Guidance, Navigation, and Control Conference , 2008 .

[14]  Craig H. Bishop,et al.  Adaptive sampling with the ensemble transform Kalman filter , 2001 .

[15]  Shinfield Park Adaptive observations , the Hessian metric and singular vectors , 2003 .