Tunable plasmon coupling in distance-controlled gold nanoparticles.

Plasmons are resonant excitations in metallic films and nanoparticles. For small enough static distances of metal nanoparticles, additional plasmon-coupled modes appear as a collective excitation between the nanoparticles. Here we show, by combining poly(N-isopropylacrylamide) micro- and nanospheres and Au nanoparticles, how to design a system that allows controllably and reversibly switching on and off, and tuning the plasmon-coupled mode.

[1]  P. Mulvaney,et al.  Surface plasmon spectroscopy of gold-poly-N-isopropylacrylamide core-shell particles. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[2]  Matthias Karg,et al.  Nanorod-coated PNIPAM microgels: thermoresponsive optical properties. , 2007, Small.

[3]  Federico Capasso,et al.  Self-Assembled Plasmonic Nanoparticle Clusters , 2010, Science.

[4]  A. Agarwal,et al.  Gold nanorods 3D-supercrystals as surface enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prions , 2011, Proceedings of the National Academy of Sciences.

[5]  Bruce T. Draine,et al.  Beyond Clausius-Mossotti - Wave propagation on a polarizable point lattice and the discrete dipole approximation. [electromagnetic scattering and absorption by interstellar grains] , 1992 .

[6]  Rafael Contreras-Cáceres,et al.  Au@pNIPAM Thermosensitive Nanostructures: Control over Shell Cross‐linking, Overall Dimensions, and Core Growth , 2009 .

[7]  Matthias Karg,et al.  Multiresponsive hybrid colloids based on gold nanorods and poly(NIPAM-co-allylacetic acid) microgels: temperature- and pH-tunable plasmon resonance. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[8]  E. Kumacheva,et al.  Microgels loaded with gold nanorods: photothermally triggered volume transitions under physiological conditions. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[9]  Yung Doug Suh,et al.  Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. , 2010, Nature materials.

[10]  Toyoichi Tanaka,et al.  Volume phase transition in a nonionic gel , 1984 .

[11]  George C. Schatz,et al.  Electrodynamics of Noble Metal Nanoparticles and Nanoparticle Clusters , 1999 .

[12]  Matthias Karg,et al.  Self‐Assembly of Tunable Nanocrystal Superlattices Using Poly‐(NIPAM) Spacers , 2011 .

[13]  H. Weller,et al.  Plasmon-exciton interactions on single thermoresponsive platforms demonstrated by optical tweezers. , 2011, Nano letters.

[14]  B. Draine,et al.  Discrete-dipole approximation for periodic targets: theory and tests. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[15]  Stephen Mann,et al.  One‐Dimensional Plasmon Coupling by Facile Self‐Assembly of Gold Nanoparticles into Branched Chain Networks , 2005 .

[16]  E. Kumacheva,et al.  MICROGELS: Old Materials with New Applications , 2006 .

[17]  H. Weller,et al.  CdSe/CdS nanoparticles immobilized on pNIPAm-based microspheres , 2010 .

[18]  Daniel Ratchford,et al.  Manipulating coupling between a single semiconductor quantum dot and single gold nanoparticle. , 2011, Nano letters.

[19]  Luke P. Lee,et al.  High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate. , 2005, Nano letters.

[20]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[21]  Neus G Bastús,et al.  Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[22]  Carsten Sönnichsen,et al.  A molecular ruler based on plasmon coupling of single gold and silver nanoparticles , 2005, Nature Biotechnology.

[23]  E. Purcell,et al.  Scattering and Absorption of Light by Nonspherical Dielectric Grains , 1973 .

[24]  Michael J. Campolongo,et al.  Building plasmonic nanostructures with DNA. , 2011, Nature nanotechnology.

[25]  P. Nordlander,et al.  Plasmons in strongly coupled metallic nanostructures. , 2011, Chemical reviews.

[26]  P. Pramod,et al.  Plasmon Coupling in Dimers of Au Nanorods , 2008 .

[27]  Stephan Schmidt,et al.  Thermoresponsive surfaces by spin-coating of PNIPAM-co-PAA microgels: A combined AFM and ellipsometry study , 2008 .

[28]  C. Haynes,et al.  Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics , 2001 .

[29]  Wei Zhou,et al.  Tunable subradiant lattice plasmons by out-of-plane dipolar interactions. , 2011, Nature nanotechnology.

[30]  Luis M Liz-Marzán,et al.  Au@pNIPAM colloids as molecular traps for surface-enhanced, spectroscopic, ultra-sensitive analysis. , 2009, Angewandte Chemie.

[31]  A. Kornowski,et al.  Tailor-made ligands for biocompatible nanoparticles. , 2006, Angewandte Chemie.