Controlling Epidermal Growth Factor (EGF)-stimulated Ras Activation in Intact Cells by a Cell-permeable Peptide Mimicking Phosphorylated EGF Receptor*

Epidermal growth factor (EGF)-stimulated Ras activation involves specific interactions between the EGF receptor (EGFR), the adaptor proteins Grb2 and Shc, and the nucleotide exchange factor Sos-1. Study and control of these protein-protein interactions in vivo can be greatly promoted by introducing intracellular reagents that mimic EGFR functions. Here, we showed that a synthetic phosphopeptide encompassing the autophosphorylation site 1068 of EGFR formed a complex with endogenous Grb2 after this peptide was delivered into intact cells by a cell-permeable peptide import technique. Consequently, this intracellular peptide inhibited EGF-induced EGFR/Grb2 associations but not EGFR/Shc or Shc/Grb2 associations. Peptide-mediated disruption of the EGF/Grb2/Sos-1 cascade led to reduced Ras activation and mitogen-activated protein kinase activation. These results indicate that the binding of Grb2 to the phosphorylated Tyr-1068 of EGFR is crucial to the EGF-induced Ras/mitogen-activated protein kinase signaling pathway. The application of cell-permeable peptides to this study demonstrates a useful biochemical tool to probe and control various intracellular processes involved in signal transduction and gene transcription.

[1]  E. Hafen,et al.  A Drosophila SH2-SH3 adaptor protein implicated in coupling the sevenless tyrosine kinase to an activator of Ras guanine nucleotide exchange, Sos , 1993, Cell.

[2]  G. Rubin,et al.  An SH3-SH2-SH3 protein is required for p21 Ras1 activation and binds to sevenless and Sos proteins in vitro , 1993, Cell.

[3]  P Cicchetti,et al.  Identification of a ten-amino acid proline-rich SH3 binding site. , 1993, Science.

[4]  G. Carpenter,et al.  Individual epidermal growth factor receptor autophosphorylation sites do not stringently define association motifs for several SH2-containing proteins. , 1994, The Journal of biological chemistry.

[5]  R. Weinberg,et al.  Association of Sos Ras exchange protein with Grb2 is implicated in tyrosine kinase signal transduction and transformation , 1993, Nature.

[6]  B. Margolis,et al.  A region in Shc distinct from the SH2 domain can bind tyrosine-phosphorylated growth factor receptors. , 1994, The Journal of biological chemistry.

[7]  J. Bos,et al.  cAMP antagonizes p21ras‐directed activation of extracellular signal‐regulated kinase 2 and phosphorylation of mSos nucleotide exchange factor. , 1993, The EMBO journal.

[8]  T. Torgerson,et al.  Inhibition of Nuclear Translocation of Transcription Factor NF-κB by a Synthetic Peptide Containing a Cell Membrane-permeable Motif and Nuclear Localization Sequence (*) , 1995, The Journal of Biological Chemistry.

[9]  Sheila M. Thomas,et al.  Association of the Shc and Grb2/Sem5 SH2-containing proteins is implicated in activation of the Ras pathway by tyrosine kinases , 1992, Nature.

[10]  T. Pawson,et al.  The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator mSos1 , 1993, Nature.

[11]  T. Pawson,et al.  The PTB domain: a new protein module implicated in signal transduction. , 1995, Trends in biochemical sciences.

[12]  T Pawson,et al.  Specific motifs recognized by the SH2 domains of Csk, 3BP2, fps/fes, GRB-2, HCP, SHC, Syk, and Vav , 1994, Molecular and cellular biology.

[13]  J. Blenis,et al.  ras mediates nerve growth factor receptor modulation of three signal-transducing protein kinases: MAP kinase, Raf-1, and RSK , 1992, Cell.

[14]  Yao-Zhong Lin,et al.  Role of the Nuclear Localization Sequence in Fibroblast Growth Factor-1-stimulated Mitogenic Pathways (*) , 1996, The Journal of Biological Chemistry.

[15]  Nancy Y. Ip,et al.  ERKs: A family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF , 1991, Cell.

[16]  Y. Kido,et al.  Grb2/Ash binds directly to tyrosines 1068 and 1086 and indirectly to tyrosine 1148 of activated human epidermal growth factor receptors in intact cells. , 1994, The Journal of biological chemistry.

[17]  A. Cherniack,et al.  Disassembly of Son-of-sevenless Proteins from Grb2 during p21 Desensitization by Insulin (*) , 1995, The Journal of Biological Chemistry.

[18]  R. B. Merrifield Solid phase peptide synthesis. I. the synthesis of a tetrapeptide , 1963 .

[19]  L. Williams,et al.  An alternative to SH2 domains for binding tyrosine-phosphorylated proteins. , 1994, Science.

[20]  T. Pawson,et al.  SH2 domains recognize specific phosphopeptide sequences , 1993, Cell.

[21]  M. Wigler,et al.  Human Sos1: a guanine nucleotide exchange factor for Ras that binds to GRB2. , 1993, Science.

[22]  Joseph Schlessinger,et al.  Signal transduction by receptors with tyrosine kinase activity , 1990, Cell.

[23]  B. Margolis,et al.  Proteins with SH2 domains: transducers in the tyrosine kinase signaling pathway. , 1992, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research.

[24]  J. Schlessinger,et al.  Hierarchy of binding sites for Grb2 and Shc on the epidermal growth factor receptor , 1994, Molecular and cellular biology.

[25]  Julian Downward,et al.  Epidermal growth factor regulates p21 ras through the formation of a complex of receptor, Grb2 adapter protein, and Sos nucleotide exchange factor , 1993, Cell.

[26]  A. Craparo,et al.  Phosphotyrosine-dependent interaction of SHC and insulin receptor substrate 1 with the NPEY motif of the insulin receptor via a novel non-SH2 domain , 1995, Molecular and cellular biology.

[27]  Nanxin Li,et al.  Guanine-nucleotide-releasing factor hSos1 binds to Grb2 and links receptor tyrosine kinases to Ras signalling , 1993, Nature.

[28]  D. Bar-Sagi,et al.  Grb2 mediates the EGF-dependent activation of guanine nucleotide exchange on Ras , 1993, Nature.