$\mathcal {H}$ Distribution for Multilook Polarimetric SAR Data

Polarimetric synthetic aperture radar (PolSAR) is an advanced imaging radar system, for which the acquired data provide not only the information of each channel but also the correlation between channels. To fully utilize and accurately model the multilook PolSAR data, a novel compound distribution, named the <inline-formula> <tex-math notation="LaTeX">$\mathcal {H}$ </tex-math></inline-formula> distribution, is proposed based on the generalized Fisher distribution (<inline-formula> <tex-math notation="LaTeX">$\text{G}\mathcal {F}\text{D}$ </tex-math></inline-formula>). Specifically, the <inline-formula> <tex-math notation="LaTeX">$\text{G}\mathcal {F}\text{D}$ </tex-math></inline-formula> introduces a power parameter to the ordinary Fisher distribution. With one more free parameter, the <inline-formula> <tex-math notation="LaTeX">$\text{G}\mathcal {F}\text{D}$ </tex-math></inline-formula> is flexible and versatile enough to characterize different kinds of texture. Then, by assuming the generalized-Fisher-distributed texture and the Wishart-distributed speckle, the <inline-formula> <tex-math notation="LaTeX">$\mathcal {H}$ </tex-math></inline-formula> distribution is derived, whose closed-form expression is obtained with the help of Fox’s H-function. As such, the <inline-formula> <tex-math notation="LaTeX">$\mathcal {H}$ </tex-math></inline-formula> distribution has a compact form and is conveniently applied to practical problems, such as modeling and classification of PolSAR data. The effectiveness of this method is tested by modeling the multilook PolSAR data and performing image classification. The experimental results demonstrate that the <inline-formula> <tex-math notation="LaTeX">$\mathcal {H}$ </tex-math></inline-formula> distribution is a flexible and effective way to model multilook PolSAR data.

[1]  Jong-Sen Lee,et al.  Polarimetric SAR speckle filtering and its implication for classification , 1999, IEEE Trans. Geosci. Remote. Sens..

[2]  Alejandro C. Frery,et al.  The polarimetric 𝒢 distribution for SAR data analysis , 2005 .

[3]  Henri Maître,et al.  A new statistical model for Markovian classification of urban areas in high-resolution SAR images , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Heng-Chao Li,et al.  On the Empirical-Statistical Modeling of SAR Images With Generalized Gamma Distribution , 2011, IEEE Journal of Selected Topics in Signal Processing.

[5]  Shiyong Cui,et al.  A Comparative Study of Statistical Models for Multilook SAR Images , 2014, IEEE Geoscience and Remote Sensing Letters.

[6]  Adolfo Martínez Usó,et al.  Clustering-Based Hyperspectral Band Selection Using Information Measures , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[7]  Rama Chellappa,et al.  Entropy rate superpixel segmentation , 2011, CVPR 2011.

[8]  K. Ranson,et al.  K-distribution for multi-look processed polarimetric SAR imagery , 1994, Proceedings of IGARSS '94 - 1994 IEEE International Geoscience and Remote Sensing Symposium.

[9]  Torbjørn Eltoft,et al.  Application of the Matrix-Variate Mellin Transform to Analysis of Polarimetric Radar Images , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Yan Wu,et al.  The WGΓ Distribution for Multilook Polarimetric SAR Data and Its Application , 2015, IEEE Geoscience and Remote Sensing Letters.

[11]  Thomas L. Ainsworth,et al.  Unsupervised classification using polarimetric decomposition and the complex Wishart classifier , 1999, IEEE Trans. Geosci. Remote. Sens..

[12]  N. R. Goodman Statistical analysis based on a certain multivariate complex Gaussian distribution , 1963 .

[13]  Armand Lopes,et al.  Optimal speckle reduction for the product model in multilook polarimetric SAR imagery and the Wishart distribution , 1997, IEEE Trans. Geosci. Remote. Sens..

[14]  J. Nicolas,et al.  Introduction to Second Kind Statistics: Application of Log-Moments and Log-Cumulants to the Analysis of Radar Image Distributions , 2011 .

[15]  Jean-Marie Nicolas 1 - Introduction aux Statistiques de deuxième espèce : applications des Logs-moments et des Logs-cumulants à l'analyse des lois d'images radar , 2002 .

[16]  E. Stacy A Generalization of the Gamma Distribution , 1962 .

[17]  Lionel Bombrun,et al.  Fisher Distribution for Texture Modeling of Polarimetric SAR Data , 2008, IEEE Geoscience and Remote Sensing Letters.

[18]  Hao-gui Cui,et al.  Modeling polarimetric SAR images with L-distribution and novel parameter estimation method , 2014 .

[19]  Raffaella Guida,et al.  Application of Mellin-Kind Statistics to Polarimetric ${\cal G}$ Distribution for SAR Data , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[20]  Wen Hong,et al.  An Efficient and Flexible Statistical Model Based on Generalized Gamma Distribution for Amplitude SAR Images , 2010, IEEE Transactions on Geoscience and Remote Sensing.