Isogeometric Collocation: Cost Comparison with Galerkin Methods and Extension to Adaptive Hierarchical NURBS Discretizations

Collocation is based on the discretization of the strong form of the underlying partial differential equations, which requires basis functions of sufficient order and smoothness. Consequently, the use of isogeometric analysis (IGA) for collocation suggests itself, since splines can be readily adjusted to any order in polynomial degree and continuity required by the differential operators. In addition, they can be generated for domains of arbitrary geometric and topological complexity, directly linked to and fully supported by CAD technology. The major advantage of isogeometric collocation over Galerkin type IGA is the minimization of the computational effort for numerical quadrature. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)

[1]  Gershon Elber,et al.  Geometric modeling with splines - an introduction , 2001 .

[2]  Lihua Wang,et al.  Subdomain radial basis collocation method for heterogeneous media , 2009 .

[3]  D. F. Rogers,et al.  An Introduction to NURBS: With Historical Perspective , 2011 .

[4]  T. Hughes,et al.  Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .

[5]  Thomas J. R. Hughes,et al.  n-Widths, sup–infs, and optimality ratios for the k-version of the isogeometric finite element method , 2009 .

[6]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[7]  W. Ames The Method of Weighted Residuals and Variational Principles. By B. A. Finlayson. Academic Press, 1972. 412 pp. $22.50. , 1973, Journal of Fluid Mechanics.

[8]  T. Hughes,et al.  Isogeometric collocation for elastostatics and explicit dynamics , 2012 .

[9]  Luca F. Pavarino,et al.  Isogeometric Schwarz preconditioners for linear elasticity systems , 2013 .

[10]  J. Warren,et al.  Subdivision methods for geometric design , 1995 .

[11]  Fehmi Cirak,et al.  Subdivision-stabilised immersed b-spline finite elements for moving boundary flows , 2012 .

[12]  D. Funaro,et al.  Spline approximation of advection-diffusion problems using upwind type collocation nodes , 1999 .

[13]  Bert Jüttler,et al.  Isogeometric simulation of turbine blades for aircraft engines , 2012, Comput. Aided Geom. Des..

[14]  T. Rabczuk,et al.  A two-dimensional Isogeometric Boundary Element Method for elastostatic analysis , 2012 .

[15]  T. Hughes,et al.  B¯ and F¯ projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements , 2008 .

[16]  Harry Yserentant,et al.  On the multi-level splitting of finite element spaces , 1986 .

[17]  Parviz Moin,et al.  Zonal Embedded Grids for Numerical Simulations of Wall-Bounded Turbulent Flows , 1996 .

[18]  Thomas J. R. Hughes,et al.  A simple scheme for developing ‘upwind’ finite elements , 1978 .

[19]  Ju Liu,et al.  Isogeometric analysis of the advective Cahn-Hilliard equation: Spinodal decomposition under shear flow , 2013, J. Comput. Phys..

[20]  Victor M. Calo,et al.  The Cost of Continuity: Performance of Iterative Solvers on Isogeometric Finite Elements , 2012, SIAM J. Sci. Comput..

[21]  P. M. Prenter Splines and variational methods , 1975 .

[22]  Thomas J. R. Hughes,et al.  Weak imposition of Dirichlet boundary conditions in fluid mechanics , 2007 .

[23]  R. Moser,et al.  Two-Dimensional Mesh Embedding for B-spline Methods , 1998 .

[24]  A. Shapiro,et al.  A new collocation method for the solution of the convection-dominated transport equation , 1979 .

[25]  Rida T. Farouki,et al.  The Bernstein polynomial basis: A centennial retrospective , 2012, Comput. Aided Geom. Des..

[26]  R. D. Russell,et al.  A comparison of global methods for linear two-point boundary value problems , 1975 .

[27]  Martin Kronbichler,et al.  Algorithms and data structures for massively parallel generic adaptive finite element codes , 2011, ACM Trans. Math. Softw..

[28]  Robert Schmidt,et al.  Realization of an integrated structural design process: analysis-suitable geometric modelling and isogeometric analysis , 2010, Comput. Vis. Sci..

[29]  T. Hughes,et al.  A Simple Algorithm for Obtaining Nearly Optimal Quadrature Rules for NURBS-based Isogeometric Analysis , 2012 .

[30]  T. Hughes,et al.  Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes , 2010 .

[31]  Parviz Moin,et al.  B-Spline Method and Zonal Grids for Simulations of Complex Turbulent Flows , 1997 .

[32]  Jianmin Zheng,et al.  Generalized hierarchical NURBS for interactive shape modification , 2008, VRCAI.

[33]  Luca F. Pavarino,et al.  Overlapping Schwarz Methods for Isogeometric Analysis , 2012, SIAM J. Numer. Anal..

[34]  Anath Fischer,et al.  Integrated mechanically based CAE system using B-Spline finite elements , 2000, Comput. Aided Des..

[35]  Richard W. Johnson,et al.  A B-spline collocation method for solving the incompressible Navier-Stokes equations using an ad hoc method: the Boundary Residual method , 2005 .

[36]  K. Höllig Finite element methods with B-splines , 1987 .

[37]  B. Simeon,et al.  A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .

[38]  Peter Wriggers,et al.  A mortar formulation for 3D large deformation contact using NURBS-based isogeometric analysis and the augmented Lagrangian method , 2012 .

[39]  Amara Lynn Graps,et al.  An introduction to wavelets , 1995 .

[40]  R. L. Taylor Isogeometric analysis of nearly incompressible solids , 2011 .

[41]  Jiun-Shyan Chen,et al.  Error analysis of collocation method based on reproducing kernel approximation , 2011 .

[42]  O. Botella,et al.  A high‐order mass‐lumping procedure for B‐spline collocation method with application to incompressible flow simulations , 2003 .

[43]  J. Oden Finite Elements: A Second Course , 1983 .

[44]  Manfred Bischoff,et al.  Numerical efficiency, locking and unlocking of NURBS finite elements , 2010 .

[45]  Luca F. Pavarino,et al.  BDDC PRECONDITIONERS FOR ISOGEOMETRIC ANALYSIS , 2013 .

[46]  T. Hughes,et al.  Local refinement of analysis-suitable T-splines , 2012 .

[47]  O. Botella,et al.  On a collocation B-spline method for the solution of the Navier-Stokes equations , 2002 .

[48]  Ole Sigmund,et al.  Isogeometric shape optimization of photonic crystals via Coons patches , 2011 .

[49]  Alessandro Reali,et al.  Locking-free isogeometric collocation methods for spatial Timoshenko rods , 2013 .

[50]  O. C. Zienkiewicz,et al.  The Finite Element Method for Fluid Dynamics , 2005 .

[51]  Fujio Yamaguchi,et al.  Curves and Surfaces in Computer Aided Geometric Design , 1988, Springer Berlin Heidelberg.

[52]  F. Cirak,et al.  A subdivision-based implementation of the hierarchical b-spline finite element method , 2013 .

[53]  E. Rank Adaptive remeshing and h-p domain decomposition , 1992 .

[54]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[55]  Hendrik Speleers,et al.  THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..

[56]  Robert L. Taylor,et al.  Convergence of an efficient local least-squares fitting method for bases with compact support , 2012 .

[57]  Yuri Bazilevs,et al.  3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades , 2011 .

[58]  Alessandro Reali,et al.  Duality and unified analysis of discrete approximations in structural dynamics and wave propagation : Comparison of p-method finite elements with k-method NURBS , 2008 .

[59]  Hanan Samet,et al.  Foundations of multidimensional and metric data structures , 2006, Morgan Kaufmann series in data management systems.

[60]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[61]  G. Fairweather,et al.  Orthogonal spline collocation methods for partial di erential equations , 2001 .

[62]  I. Akkerman,et al.  Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method , 2010, J. Comput. Phys..

[63]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[64]  Richard W. Johnson Higher order B-spline collocation at the Greville abscissae , 2005 .

[65]  Roland Wüchner,et al.  Isogeometric shell analysis with Kirchhoff–Love elements , 2009 .

[66]  Ernst Rank,et al.  Geometric modeling, isogeometric analysis and the finite cell method , 2012 .

[67]  Martin H. Sadd,et al.  Elasticity: Theory, Applications, and Numerics , 2004 .

[68]  Victor M. Calo,et al.  The cost of continuity: A study of the performance of isogeometric finite elements using direct solvers , 2012 .

[69]  B. Simeon,et al.  Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .

[70]  G. Pinder,et al.  Analysis of an Upstream Weighted Collocation Approximation to the Transport Equation , 1981 .

[71]  H. Ehlers LECTURERS , 1948, Statistics for Astrophysics.

[72]  Dominik Schillinger,et al.  The p- and B-spline versions of the geometrically nonlinear finite cell method and hierarchical refinement strategies for adaptive isogeometric and embedded domain analysis , 2012 .

[73]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[74]  Ralf-Peter Mundani,et al.  The finite cell method for geometrically nonlinear problems of solid mechanics , 2010 .

[75]  D. Schillinger,et al.  An unfitted hp-adaptive finite element method based on hierarchical B-splines for interface problems of complex geometry , 2011 .

[76]  D. Griffin,et al.  Finite-Element Analysis , 1975 .

[77]  Michael E. Mortenson,et al.  Geometric Modeling , 2008, Encyclopedia of GIS.

[78]  J. Kraus,et al.  Multigrid methods for isogeometric discretization , 2013, Computer methods in applied mechanics and engineering.

[79]  Thomas J. R. Hughes,et al.  Isogeometric shell analysis: The Reissner-Mindlin shell , 2010 .

[80]  Y. Bazilevs,et al.  Weakly enforced essential boundary conditions for NURBS‐embedded and trimmed NURBS geometries on the basis of the finite cell method , 2013 .

[81]  Jiun-Shyan Chen,et al.  Reproducing kernel enhanced local radial basis collocation method , 2008 .

[82]  Carsten Burstedde,et al.  p4est: Scalable Algorithms for Parallel Adaptive Mesh Refinement on Forests of Octrees , 2011, SIAM J. Sci. Comput..

[83]  Y. Bazilevs,et al.  Small and large deformation analysis with the p- and B-spline versions of the Finite Cell Method , 2012 .

[84]  N. Aluru A point collocation method based on reproducing kernel approximations , 2000 .

[85]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[86]  A. Booth Numerical Methods , 1957, Nature.

[87]  Yuri Bazilevs,et al.  Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines , 2012 .

[88]  Peter Wriggers,et al.  Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS , 2012 .

[89]  A. Peirce Computer Methods in Applied Mechanics and Engineering , 2010 .

[90]  Joseph E. Flaherty,et al.  Computational Methods for Singularly Perturbed Systems , 1998 .

[91]  J. Oden,et al.  Finite Element Methods for Flow Problems , 2003 .

[92]  Cv Clemens Verhoosel,et al.  A phase-field description of dynamic brittle fracture , 2012 .

[93]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[94]  John A. Evans,et al.  ISOGEOMETRIC DIVERGENCE-CONFORMING B-SPLINES FOR THE STEADY NAVIER–STOKES EQUATIONS , 2013 .

[95]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[96]  Thomas J. R. Hughes,et al.  Blended isogeometric shells , 2013 .

[97]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[98]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[99]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[100]  Eitan Grinspun,et al.  Natural hierarchical refinement for finite element methods , 2003 .

[101]  Ernst Rank,et al.  The hp‐d‐adaptive finite cell method for geometrically nonlinear problems of solid mechanics , 2012 .

[102]  John A. Evans,et al.  Discrete spectrum analyses for various mixed discretizations of the Stokes eigenproblem , 2012 .

[103]  Thomas J. R. Hughes,et al.  Isogeometric divergence-conforming B-splines for the unsteady Navier-Stokes equations , 2013, J. Comput. Phys..

[104]  Thomas J. R. Hughes,et al.  Isogeometric Analysis for Topology Optimization with a Phase Field Model , 2012 .

[105]  Alessandro Reali,et al.  Avoiding shear locking for the Timoshenko beam problem via isogeometric collocation methods , 2012 .

[106]  Jiun-Shyan Chen,et al.  Weighted radial basis collocation method for boundary value problems , 2007 .

[107]  Victor M. Calo,et al.  The role of continuity in residual-based variational multiscale modeling of turbulence , 2007 .

[108]  C. D. Boor,et al.  Collocation at Gaussian Points , 1973 .

[109]  Douglas N. Arnold,et al.  On the asymptotic convergence of collocation methods , 1983 .

[110]  Jörg Peters,et al.  Subdivision Surfaces , 2002, Handbook of Computer Aided Geometric Design.

[111]  W. Wall,et al.  Isogeometric structural shape optimization , 2008 .

[112]  John A. Evans,et al.  Isogeometric boundary element analysis using unstructured T-splines , 2013 .

[113]  Manfred Bischoff,et al.  A point to segment contact formulation for isogeometric, NURBS based finite elements , 2013 .

[114]  Peter Wriggers,et al.  Contact treatment in isogeometric analysis with NURBS , 2011 .

[115]  Do Wan Kim,et al.  Maximum principle and convergence analysis for the meshfree point collocation method , 2006, SIAM J. Numer. Anal..

[116]  John A. Evans,et al.  An Isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces , 2012 .

[117]  John A. Evans,et al.  Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .

[118]  Hyun-Jung Kim,et al.  Isogeometric analysis for trimmed CAD surfaces , 2009 .

[119]  Jianmin Zheng,et al.  Freeform-based form feature modeling using a hierarchical & multi-resolution NURBS method , 2010, VRCAI '10.

[120]  E. Ramm,et al.  Models and finite elements for thin-walled structures , 2004 .

[121]  David R. Forsey,et al.  Hierarchical B-spline refinement , 1988, SIGGRAPH.

[122]  T. Hughes,et al.  Efficient quadrature for NURBS-based isogeometric analysis , 2010 .

[123]  R. Echter,et al.  A hierarchic family of isogeometric shell finite elements , 2013 .

[124]  Stephen Demko,et al.  On the existence of interpolating projections onto spline spaces , 1985 .

[125]  Wing Kam Liu,et al.  Finite Element Analysis of Incompressible Viscous Flows by the Penalty Function Formulation , 1979 .

[126]  D. Arnold,et al.  On the Asymptotic Convergence of Spline Collocation Methods for Partial Differential Equations , 1984 .

[127]  Malcolm A. Sabin,et al.  Analysis and Design of Univariate Subdivision Schemes , 2010, Geometry and Computing.

[128]  Tom Lyche,et al.  Analysis-aware modeling: Understanding quality considerations in modeling for isogeometric analysis , 2010 .

[129]  Bert Jüttler,et al.  IETI – Isogeometric Tearing and Interconnecting , 2012, Computer methods in applied mechanics and engineering.

[130]  T. Hughes,et al.  ISOGEOMETRIC COLLOCATION METHODS , 2010 .