Inertial Focusing for Tumor Antigen–Dependent and –Independent Sorting of Rare Circulating Tumor Cells

A multistage microfluidic chip is capable of sorting rare EpCAM+ and EpCAM− CTCs from cancer patients’ whole blood. Positive and Negative Outcomes Usually people want the good news first, to help cope with the bad news that inevitably follows. However, patients will soon desire both the positive and the negative outcomes together, according to the latest study by Ozkumur and colleagues. These authors have developed a multistage microfluidic device that is capable of sorting rare circulating tumor cells (CTCs) that are either positive or negative for the surface antigen epithelial cell adhesion molecule (EpCAM). EpCAM+ cells found in the bloodstream have long defined the typical CTC. Many sorting technologies have been developed to enumerate EpCAM+ CTCs in cancer patient’s blood; however, these cells are not always detectable in cancers with low EpCAM expression, like triple-negative breast cancer or melanoma. Ozkumur et al. engineered an automated platform, called the “CTC-iChip,” that captured both EpCAM+ and EpCAM− cancer cells in clinical samples using a series of debulking, inertial focusing, and magnetic separation steps. The sorted CTCs could then be interrogated using standard clinical protocols, such as immunocytochemistry. The authors tested the “positive mode” of their device using whole blood from patients with prostate, lung, breast, pancreatic, and colorectal cancers. After successfully separating out the EpCAM+ CTCs, they confirmed that the cells were viable and had high-quality RNA for molecular analysis, in one example, detecting the EML4-ALK gene fusion in lung cancer. Using the “negative mode” of their device, the authors were able to capture EpCAM− CTCs from patients with metastatic breast cancer, pancreatic cancer, and melanoma. The isolated CTCs showed similar morphology when compared with primary tumor tissue from these patients, suggesting that the microfluidic device can be used for clinical diagnoses—delivering both positive and negative news at once. Ozkumur et al. also demonstrated that CTCs isolated using the iChip could be analyzed on the single-cell level. One such demonstration with 15 CTCs from a prostate cancer patient reveals marked heterogeneity in the expression of mesenchymal and stem cell markers as well as typical prostate cancer–related antigens. The CTC-iChip can therefore process large volumes of patient blood to obtain not just EpCAM+ CTCs but also the EpCAM− ones, thus giving a broader picture of an individual’s cancer status and also allowing the device to be used for more cancer types. With the ability to further analyze the molecular characteristics of CTCs, this CTC-iChip could be a promising addition to current diagnostic tools used in the clinic. Circulating tumor cells (CTCs) are shed into the bloodstream from primary and metastatic tumor deposits. Their isolation and analysis hold great promise for the early detection of invasive cancer and the management of advanced disease, but technological hurdles have limited their broad clinical utility. We describe an inertial focusing–enhanced microfluidic CTC capture platform, termed “CTC-iChip,” that is capable of sorting rare CTCs from whole blood at 107 cells/s. Most importantly, the iChip is capable of isolating CTCs using strategies that are either dependent or independent of tumor membrane epitopes, and thus applicable to virtually all cancers. We specifically demonstrate the use of the iChip in an expanded set of both epithelial and nonepithelial cancers including lung, prostate, pancreas, breast, and melanoma. The sorting of CTCs as unfixed cells in solution allows for the application of high-quality clinically standardized morphological and immunohistochemical analyses, as well as RNA-based single-cell molecular characterization. The combination of an unbiased, broadly applicable, high-throughput, and automatable rare cell sorting technology with generally accepted molecular assays and cytology standards will enable the integration of CTC-based diagnostics into the clinical management of cancer.

[1]  Mehmet Toner,et al.  Circulating tumor cells: approaches to isolation and characterization , 2011, The Journal of cell biology.

[2]  J. Chalmers,et al.  Optimization of an enrichment process for circulating tumor cells from the blood of head and neck cancer patients through depletion of normal cells , 2009, Biotechnology and bioengineering.

[3]  Andreas Radbruch,et al.  High gradient magnetic cell separation with MACS. , 1990, Cytometry.

[4]  G. Doyle,et al.  Significance of Circulating Tumor Cells Detected by the CellSearch System in Patients with Metastatic Breast Colorectal and Prostate Cancer , 2009, Journal of oncology.

[5]  S. Digumarthy,et al.  Isolation of rare circulating tumour cells in cancer patients by microchip technology , 2007, Nature.

[6]  J. Sturm,et al.  Continuous Particle Separation Through Deterministic Lateral Displacement , 2004, Science.

[7]  Sridhar Ramaswamy,et al.  Androgen receptor signaling in circulating tumor cells as a marker of hormonally responsive prostate cancer. , 2012, Cancer discovery.

[8]  R. Tompkins,et al.  A microfluidics approach for the isolation of nucleated red blood cells (NRBCs) from the peripheral blood of pregnant women , 2008, Prenatal diagnosis.

[9]  G. Segré,et al.  Radial Particle Displacements in Poiseuille Flow of Suspensions , 1961, Nature.

[10]  Sridhar Ramaswamy,et al.  Circulating Breast Tumor Cells Exhibit Dynamic Changes in Epithelial and Mesenchymal Composition , 2013, Science.

[11]  Cesar M. Castro,et al.  Ultrasensitive Clinical Enumeration of Rare Cells ex Vivo Using a Micro-Hall Detector , 2012, Science Translational Medicine.

[12]  Maciej Zborowski,et al.  Enrichment of rare cancer cells through depletion of normal cells using density and flow-through, immunomagnetic cell separation. , 2004, Experimental hematology.

[13]  Peter Kuhn,et al.  A rare-cell detector for cancer. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Mark M Davis,et al.  Isolating highly enriched populations of circulating epithelial cells and other rare cells from blood using a magnetic sweeper device , 2009, Proceedings of the National Academy of Sciences.

[15]  Mehmet Toner,et al.  Isolation and Characterization of Circulating Tumor Cells from Patients with Localized and Metastatic Prostate Cancer , 2010, Science Translational Medicine.

[16]  Mieke Schutte,et al.  Anti-Epithelial Cell Adhesion Molecule Antibodies and the Detection of Circulating Normal-Like Breast Tumor Cells , 2009, Journal of the National Cancer Institute.

[17]  Mehmet Toner,et al.  Detection of mutations in EGFR in circulating lung-cancer cells. , 2008, The New England journal of medicine.

[18]  D. Krag,et al.  Enrichment with anti-cytokeratin alone or combined with anti-EpCAM antibodies significantly increases the sensitivity for circulating tumor cell detection in metastatic breast cancer patients , 2008, Breast Cancer Research.

[19]  Raghu Kalluri,et al.  The basics of epithelial-mesenchymal transition. , 2009, The Journal of clinical investigation.

[20]  Shashi K Murthy,et al.  Computational design optimization for microfluidic magnetophoresis. , 2011, Biomicrofluidics.

[21]  J. Baselga,et al.  The Evolving War on Cancer , 2011, Cell.

[22]  K. Isselbacher,et al.  Isolation of circulating tumor cells using a microvortex-generating herringbone-chip , 2010, Proceedings of the National Academy of Sciences.

[23]  Jonathan W. Uhr,et al.  Tumor Cells Circulate in the Peripheral Blood of All Major Carcinomas but not in Healthy Subjects or Patients With Nonmalignant Diseases , 2004, Clinical Cancer Research.

[24]  Francis Barany,et al.  High-throughput selection, enumeration, electrokinetic manipulation, and molecular profiling of low-abundance circulating tumor cells using a microfluidic system. , 2011, Analytical chemistry.

[25]  Sridhar Ramaswamy,et al.  A developmentally regulated inducer of EMT, LBX1, contributes to breast cancer progression. , 2009, Genes & development.

[26]  David J. Beebe,et al.  Circulating Tumor Cells: Getting More from Less , 2012, Science Translational Medicine.

[27]  Joshua M. Kunken,et al.  Fluid biopsy in patients with metastatic prostate, pancreatic and breast cancers , 2012, Physical biology.

[28]  Aaron J Mackey,et al.  Getting More from Less , 2002, Molecular & Cellular Proteomics.

[29]  R. Tompkins,et al.  Continuous inertial focusing, ordering, and separation of particles in microchannels , 2007, Proceedings of the National Academy of Sciences.

[30]  Yi-Kuen Lee,et al.  Highly efficient capture of circulating tumor cells by using nanostructured silicon substrates with integrated chaotic micromixers. , 2011, Angewandte Chemie.

[31]  Ruud H. Brakenhoff,et al.  Detection, clinical relevance and specific biological properties of disseminating tumour cells , 2008, Nature Reviews Cancer.