Acoustic vibration problem for dissipative fluids

In this paper we analyze a finite element method for solving a quadratic eigenvalue problem derived from the acoustic vibration problem for a heterogeneous dissipative fluid. The problem is shown to be equivalent to the spectral problem for a noncompact operator and athorough spectral characterization is given. The numerical discretization of the problem is based on Raviart-Thomas finite elements. The method is proved to be free of spurious modes and to converge with optimal order. Finally, we report numerical tests which allow us to assess the performance of the method.

[1]  Daniel Peterseim Composite finite elements for elliptic interface problems , 2014, Math. Comput..

[2]  JEAN DESCLOUX,et al.  On spectral approximation. Part 2. Error estimates for the Galerkin method , 1978 .

[3]  Karl Meerbergen,et al.  The Quadratic Eigenvalue Problem , 2001, SIAM Rev..

[4]  M. Reed Methods of Modern Mathematical Physics. I: Functional Analysis , 1972 .

[5]  Alfredo Bermúdez,et al.  Modelling and numerical solution of elastoacoustic vibrations with interface damping , 1999 .

[6]  P. Morse Vibration and Sound , 1949, Nature.

[7]  M. Blumenfeld The regularity of interface-problems on corner-regions , 1985 .

[8]  Christian Soize,et al.  Structural Acoustics and Vibration: Mechanical Models, Variational Formulations and Discretization , 1997 .

[9]  D. Peterseim,et al.  Generalized finite element methods for quadratic eigenvalue problems , 2015, 1510.05792.

[10]  Daniel Peterseim,et al.  Computation of eigenvalues by numerical upscaling , 2012, Numerische Mathematik.

[11]  A. Bermúdez,et al.  Finite element vibration analysis of fluid-solid systems without spurious modes , 1995 .

[12]  Peter Monk,et al.  Finite Element Methods for Maxwell's Equations , 2003 .

[13]  Roger Ohayon,et al.  A new finite element formulation for internal acoustic problems with dissipative walls , 2006 .

[14]  K Lemrabet An interface problem in a domain of R3 , 1978 .

[15]  Salvatore Caorsi,et al.  On the Convergence of Galerkin Finite Element Approximations of Electromagnetic Eigenproblems , 2000, SIAM J. Numer. Anal..

[16]  H. Langer,et al.  On some mathematical principles in the linear theory of damped oscilations of continua II , 1978 .

[17]  Ricardo G. Durán,et al.  Finite Element Analysis of a Quadratic Eigenvalue Problem Arising in Dissipative Acoustics , 2000, SIAM J. Numer. Anal..

[18]  Tosio Kato Perturbation theory for linear operators , 1966 .

[19]  Annalisa Buffa,et al.  Remarks on the Discretization of Some Noncoercive Operator with Applications to Heterogeneous Maxwell Equations , 2005, SIAM J. Numer. Anal..

[20]  Peter Monk,et al.  Discrete compactness and the approximation of Maxwell's equations in R3 , 2001, Math. Comput..

[21]  Martin Petzoldt,et al.  A Posteriori Error Estimators for Elliptic Equations with Discontinuous Coefficients , 2002, Adv. Comput. Math..

[22]  Daniele Boffi,et al.  Fortin operator and discrete compactness for edge elements , 2000, Numerische Mathematik.

[23]  Daniele Boffi,et al.  Finite element approximation of eigenvalue problems , 2010, Acta Numerica.

[24]  Wen-Wei Lin,et al.  Efficient Arnoldi-type algorithms for rational eigenvalue problems arising in fluid-solid systems , 2011, J. Comput. Phys..

[25]  D. Arnold,et al.  Finite element exterior calculus, homological techniques, and applications , 2006, Acta Numerica.

[26]  Salim Meddahi,et al.  Finite Element Spectral Analysis for the Mixed Formulation of the Elasticity Equations , 2013, SIAM J. Numer. Anal..

[27]  J. Rappaz,et al.  On spectral approximation. Part 1. The problem of convergence , 1978 .

[28]  R. Hiptmair Finite elements in computational electromagnetism , 2002, Acta Numerica.

[29]  Stefano Giani,et al.  Efficient and reliable hp-FEM estimates for quadratic eigenvalue problems and photonic crystal applications , 2016, Comput. Math. Appl..

[30]  A. Bermúdez,et al.  TWO DISCRETIZATION SCHEMES FOR A TIME-DOMAIN DISSIPATIVE ACOUSTICS PROBLEM , 2006 .

[31]  M. Petzoldt Regularity Results for Laplace Interface Problems in Two Dimensions , 2001 .