Nonlinear Processes in Geophysics Scaling and multifractal fields in the solid earth and topography

Starting about thirty years ago, new ideas in nonlinear dynamics, particularly fractals and scaling, provoked an explosive growth of research both in modeling and in experimentally characterizing geosystems over wide ranges of scale. In this review we focus on scaling advances in solid earth geophysics including the topography. To reduce the review to manageable proportions, we restrict our attention to scaling fields, i.e. to the discussion of intensive quantities such as ore concentrations, rock densities, susceptibilities, and magnetic and gravitational fields. We discuss the growing body of evidence showing that geofields are scaling (have power law dependencies on spatial scale, resolution), over wide ranges of both horizontal and vertical scale. Focusing on the cases where both horizontal and vertical statistics have both been estimated from proximate data, we argue that the exponents are systematically different, reflecting lithospheric stratification which – while very strong at small scales – becomes less and less pronounced at larger and larger scales, but in a scaling manner. We then discuss the necessity for treating the fields as multifractals rather than monofractals, the latter being too restrictive a framework. We discuss the consequences of multifractality for geostatistics, we then discuss cascade processes in which the same dynamical mechanism repeats scale after scale over a range. Using the binomial model first proposed by de Wijs (1951) as an example, we discuss the issues of microcanonical versus canonical conservation, algebraic ("Pareto") versus long tailed (e.g. lognormal) distributions, multifractal universality, conservative and nonconservative multifractal processes, codimension versus dimension formalisms. We compare and contrast different scaling models (fractional Brownian motion, fractional Levy motion, continuous (in scale) cascades), showing that they are all based on fractional integrations of noises built up from singularity basis functions. We show how anisotropic (including stratified) models can be produced simply by replacing the usual distance function by an anisotropic scale function, hence by replacing isotropic singularities by anisotropic ones.

[1]  P. Leary Rock as a critical-point system and the inherent implausibility of reliable earthquake prediction , 1997 .

[2]  Benoit B. Mandelbrot,et al.  Fractal geometry: what is it, and what does it do? , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[3]  L F Richardson,et al.  The problem of contiguity : An appendix to statistics of deadly quarrels , 1961 .

[4]  G. Balmino The Spectra of the topography of the Earth, Venus and Mars , 1993 .

[5]  M. Goodchild,et al.  The fractal properties of topography: A comparison of methods , 1992 .

[6]  Q. Cheng Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China , 2007 .

[7]  D. Schertzer,et al.  Percolating magmas and explosive volcanism , 2003 .

[8]  Donald L. Turcotte,et al.  A fractal approach to the relationship between ore grade and tonnage , 1986 .

[9]  Edward C. Waymire,et al.  A statistical analysis of mesoscale rainfall as a random cascade , 1993 .

[10]  D. Schertzer,et al.  Functional Box-Counting and Multiple Elliptical Dimensions in Rain , 1987, Science.

[11]  G. Matheron Random Functions and their Application in Geology , 1970 .

[12]  R. A. Crovelli,et al.  Fractals and the Pareto distribution applied to petroleum accumulation-size distributions , 1993 .

[13]  R. Wu,et al.  Heterogeneity spectrum and scale-anisotropy in the upper crust revealed by the German Continental Deep-Drilling (KTB) Holes , 1994 .

[14]  D. Weatherley,et al.  Earthquake statistics in a Block Slider Model and a fully dynamic Fault Model , 2004 .

[15]  D. Turcotte,et al.  Self-organized criticality , 1999 .

[16]  Q. Cheng,et al.  Integrated Spatial and Spectrum Method for Geochemical Anomaly Separation , 2000 .

[17]  I. Good,et al.  Fractals: Form, Chance and Dimension , 1978 .

[18]  Govindan Rangarajan,et al.  Fractals in geophysics , 2004 .

[19]  Qiuming Cheng,et al.  Multifractal modeling and spatial statistics , 1996 .

[20]  W. M. Kaula,et al.  A spherical harmonic analysis of the Earth's topography , 1967 .

[21]  D. Gibert,et al.  Seasat Altimetry and the South Atlantic Geoid: 1. Spectral analysis , 1987 .

[22]  Daniel Schertzer,et al.  Multifractal surfaces and terrestrial topography , 2003 .

[23]  J. Kapteyn Skew frequency curves in biology- and statistics , 1918, Zeitschrift für induktive Abstammungs- und Vererbungslehre.

[24]  Alberto Malinverno,et al.  Fractals and Ocean Floor Topography: A Review and a Model , 1995 .

[25]  S. Redner,et al.  Introduction To Percolation Theory , 2018 .

[26]  Jean-Claude Mareschal,et al.  Fractal reconstruction of sea-floor topography , 1989 .

[27]  Shaun Lovejoy,et al.  Generalised scale invariance in turbulent phenomena , 1985 .

[28]  M. Pilkington,et al.  Scaling nature of crustal susceptibilities , 1995 .

[29]  Tang,et al.  Self-Organized Criticality: An Explanation of 1/f Noise , 2011 .

[30]  R. Plotnick,et al.  Fractal and Multifractal Models and Methods in Stratigraphy , 1995 .

[31]  D. Schertzer,et al.  Space and Time Scale Variability and Interdependencies in Hydrological Processes: FROM SCALAR CASCADES TO LIE CASCADES: JOINT MULTIFRACTAL ANALYSIS OF RAIN AND CLOUD PROCESSES , 1995 .

[32]  M. Pilkington,et al.  Fractal magnetization of continental crust , 1993 .

[33]  Q. Cheng Multifractality and spatial statistics , 1999 .

[34]  D. Schertzer,et al.  Non-Linear Variability in Geophysics : Scaling and Fractals , 1990 .

[35]  Robert A. Langel,et al.  A geomagnetic field spectrum , 1982 .

[36]  Benoit B. Mandelbrot,et al.  The Statistics of Natural Resources and the Law of Pareto , 1995 .

[37]  Y. Brunet,et al.  Empirical study of multifractal phase transitions in atmospheric turbulence , 1994 .

[38]  Scale invariance of basaltic lava flows and their fractal dimensions , 1992 .

[39]  Fred J. Molz,et al.  Fractional Brownian motion and fractional Gaussian noise in subsurface hydrology: A review, presentation of fundamental properties, and extensions , 1997 .

[40]  Shaun Lovejoy,et al.  Causal space‐time multifractal processes: Predictability and forecasting of rain fields , 1996 .

[41]  Multifractal properties of visible reflectance fields from basaltic volcanoes , 1999 .

[42]  Matthias Holschneider,et al.  Wavelets - an analysis tool , 1995, Oxford mathematical monographs.

[43]  B. Mandelbrot How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension , 1967, Science.

[44]  M. Taqqu,et al.  Stable Non-Gaussian Random Processes : Stochastic Models with Infinite Variance , 1995 .

[45]  Alain Arneodo,et al.  Revisiting multifractality of high‐resolution temporal rainfall using a wavelet‐based formalism , 2005 .

[46]  J. Aitchison,et al.  The lognormal distribution : with special reference to its uses in economics , 1957 .

[47]  Donald L. Turcotte,et al.  Fractal analysis of Venus topography in Tinatin Planitia and Ovda Regio , 1992 .

[48]  D. Schertzer,et al.  Anisotropic Scaling Models of Rock Density and the Earth’s Surface Gravity Field , 2008 .

[49]  1/f Geology and Seismic Deconvolution , 1991 .

[50]  D. Schertzer,et al.  Scale, Scaling and Multifractals in Geophysics: Twenty Years on , 2007 .

[51]  Succi,et al.  Extended self-similarity in turbulent flows. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[52]  M. Fedi Global and Local Multiscale Analysis of Magnetic Susceptibility Data , 2003 .

[53]  P. Levy,et al.  Calcul des Probabilites , 1926, The Mathematical Gazette.

[54]  Daniel Schertzer,et al.  The l 1/2 law and multifractal topography: theory and analysis , 1995 .

[55]  V. Dimri Fractals in Geophysics and Seismology: An Introduction , 2005 .

[56]  D. H. Root,et al.  Estimating usable resources from historical industry data , 1981 .

[57]  L. B. Leopold,et al.  The hydraulic geometry of stream channels and some physiographic implications , 1953 .

[58]  Regularity Analysis Applied to Well Log Data , 2005 .

[59]  K. Bahr The Route to Fractals in Magnetotelluric Exploration of the Crust , 2005 .

[60]  A. R. Bansal,et al.  Self-affine gravity covariance model for the Bay of Bengal , 2005 .

[61]  K. Holliger Fault scaling and 1/f noise scaling of seismic velocity fluctuations in the upper crystalline crust , 1996 .

[62]  C. Meneveau,et al.  Simple multifractal cascade model for fully developed turbulence. , 1987, Physical review letters.

[63]  She,et al.  Universal scaling laws in fully developed turbulence. , 1994, Physical review letters.

[64]  Dennis E. Hayes,et al.  Quantitative Methods for Analyzing the Roughness of the Seafloor (Paper 5R0105) , 1985 .

[65]  Shigeo Kida,et al.  Log-Stable Distribution and Intermittency of Turbulence , 1991 .

[66]  Schmitt,et al.  Empirical determination of universal multifractal exponents in turbulent velocity fields. , 1992, Physical review letters.

[67]  M. Ohtake,et al.  Broad-band power-law spectra of well-log data in Japan , 1997 .

[68]  I. Tchiguirinskaia,et al.  SCALE INVARIANCE AND STRATIFICATION: THE UNIFIED MULTIFRACTAL MODEL OF HYDRAULIC CONDUCTIVITY , 2002 .

[69]  H. E. Hurst,et al.  Long-Term Storage Capacity of Reservoirs , 1951 .

[70]  Jensen,et al.  Fractal measures and their singularities: The characterization of strange sets. , 1987, Physical review. A, General physics.

[71]  Q. Cheng,et al.  The separation of geochemical anomalies from background by fractal methods , 1994 .

[72]  Christopher H. Scholz,et al.  Fractal analysis applied to characteristic segments of the San Andreas Fault , 1987 .

[73]  B. Mandelbrot Intermittent turbulence in self-similar cascades : divergence of high moments and dimension of the carrier , 2004 .

[74]  Silong Lu,et al.  Multifractal versus monofractal analysis of wetland topography , 2000 .

[75]  Shaun Lovejoy,et al.  23/9 dimensional anisotropic scaling of passive admixtures using lidar data of aerosols. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[76]  Vertical versus Horizontal Well Log Variability and Application to Fractal Reservoir Modeling , 1995 .

[77]  F. Schmitt,et al.  Mulifractal phase transitions: the origin of self-organized criticality in earthquakes , 1994 .

[78]  S. Lovejoy,et al.  Fractal characterization of inhomogeneous geophysical measuring networks , 1986, Nature.

[79]  Qiuming Cheng Multifractal Distribution of Eigenvalues and Eigenvectors from 2D Multiplicative Cascade Multifractal Fields , 2005 .

[80]  H. Stanley,et al.  Multifractal Detrended Fluctuation Analysis of Nonstationary Time Series , 2002, physics/0202070.

[81]  M. Goodchild Fractals and the accuracy of geographical measures , 1980 .

[82]  K. Aki,et al.  Fractal geometry in the San Andreas Fault System , 1987 .

[83]  Christopher C. Barton,et al.  The Fractal Size and Spatial Distribution of Hydrocarbon Accumulations , 1995 .

[84]  竹中 茂夫 G.Samorodnitsky,M.S.Taqqu:Stable non-Gaussian Random Processes--Stochastic Models with Infinite Variance , 1996 .

[85]  R. Blakely Potential theory in gravity and magnetic applications , 1996 .

[86]  G. K. Boman,et al.  A fractal‐based stochastic interpolation scheme in subsurface hydrology , 1993 .

[87]  Uriel Frisch,et al.  A simple dynamical model of intermittent fully developed turbulence , 1978, Journal of Fluid Mechanics.

[88]  Gabor Korvin,et al.  Fractal models in the earth sciences , 1992 .

[89]  Christopher J. Bean,et al.  The broad-band fractal nature of heterogeneity in the upper crust from petrophysical logs , 1998 .

[90]  E. Bacry,et al.  Wavelet analysis of fully developed turbulence data and measurement of scaling exponents , 1991 .

[91]  M. Feigenbaum Quantitative universality for a class of nonlinear transformations , 1978 .

[92]  Hideki Takayasu,et al.  Fractals in the Physical Sciences , 1990 .

[93]  Shaun Lovejoy,et al.  Nonlinear Processes in Geophysics Multifractal earth topography , 2017 .

[94]  Bruce E. Shaw,et al.  Dynamics of earthquake faults , 1993, adap-org/9307001.

[95]  Power-law random behaviour of seismic reflectivity in boreholes and its relationship to crustal deformation models , 1993 .

[96]  C. C. Barton Fractal Analysis of Scaling and Spatial Clustering of Fractures , 1995 .

[97]  D. Schertzer,et al.  Stratified multifractal magnetization and surface geomagnetic fields—I. Spectral analysis and modelling , 2001 .

[98]  T. H. Bell,et al.  Statistical features of sea-floor topography , 1975 .

[99]  L. Telesca,et al.  Fractal Methods in Self-Potential Signals Measured in Seismic Areas , 2005 .

[100]  Shaun Lovejoy,et al.  The Dimension and Intermittency of Atmospheric Dynamics , 1985 .

[101]  Scaling Evidences of Thermal Properties in Earth’s Crust and its Implications , 2005 .

[102]  D. Schertzer,et al.  Multifractal Simulations of the Earth ’ s Surface and Interior : Anisotropic Singularities and Morphology , 2005 .

[103]  Christopher J. Bean,et al.  Multiscaling nature of sonic velocities and lithology in the upper crystalline crust: Evidence from the KTB main borehole , 1999 .

[104]  Michael Ghil,et al.  Turbulence and predictability in geophysical fluid dynamics and climate dynamics , 1985 .

[105]  Daniel Schertzer,et al.  Stratified multifractal magnetization and surface geomagnetic fields—II. Multifractal analysis and simulations , 2001 .

[106]  Shaun Lovejoy,et al.  Unified multifractal atmospheric dynamics tested in the tropics: part II, vertical scaling and generalized scale invariance , 1994 .

[107]  L. Knopoff,et al.  Model and theoretical seismicity , 1967 .

[108]  M. Basta,et al.  An introduction to percolation , 1994 .

[109]  B. Mandelbrot Stochastic models for the Earth's relief, the shape and the fractal dimension of the coastlines, and the number-area rule for islands. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[110]  É. Kaminski,et al.  The size distribution of pyroclasts and the fragmentation sequence in explosive volcanic eruptions , 1998 .

[111]  Donald L. Turcotte,et al.  Finite amplitude convective cells and continental drift , 1967, Journal of Fluid Mechanics.

[112]  J. R. Wallis,et al.  Some long‐run properties of geophysical records , 1969 .

[113]  D. Schertzer,et al.  On the Determination of the Codimension Function , 1991 .

[114]  D. Schertzer,et al.  Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes , 1987 .

[115]  Shaun Lovejoy,et al.  NOTES AND CORRESPONDENCE Universal Multifractals Do Exist!: Comments on ''A Statistical Analysis of Mesoscale Rainfall as a Random Cascade'' , 1997 .

[116]  H. Steinhaus Length, shape and area , 1954 .

[117]  Q. Cheng Multifractal Modeling and Lacunarity Analysis , 1997 .

[118]  Mark Pilkington,et al.  Stochastic inversion for scaling geology , 1990 .

[119]  B. Gutenberg,et al.  Frequency of Earthquakes in California , 1944, Nature.

[120]  Hans-Joachim Kümpel,et al.  Fractal variability in superdeep borehole — implications for the signature of crustal heterogeneities , 1999 .

[121]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[122]  Vijay P. Dimri,et al.  DEPTH ESTIMATION FROM THE SCALING POWER SPECTRUM OF POTENTIAL FIELDS , 1996 .

[123]  F. Agterberg,et al.  New Applications of the Model of de Wijs in Regional Geochemistry , 2007 .

[124]  S. Maus,et al.  Potential field power spectrum inversion for scaling geology , 1995 .

[125]  Lewis F. Richardson,et al.  Weather Prediction by Numerical Process , 1922 .

[126]  M. Boufadel,et al.  Multifractal characterization of airborne geophysical data at the Oak Ridge facility , 2005 .

[127]  Shaun Lovejoy,et al.  Multifractals, cloud radiances and rain , 2006 .

[128]  O. G. Jensen,et al.  Gaussian scaling noise model of seismic reflection sequences: Evidence from well logs , 1990 .

[129]  A. Kolmogorov A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number , 1962, Journal of Fluid Mechanics.

[130]  L. Ahrens A Fundamental Law of Geochemistry , 1953, Nature.

[131]  Shaun Lovejoy,et al.  Multifractal Generation of Self-Organized Criticality , 1993, Fractals in the Natural and Applied Sciences.

[132]  Donald L. Turcotte,et al.  Fractals in geology and geophysics , 2009, Encyclopedia of Complexity and Systems Science.

[133]  D. Schertzer,et al.  Multifractal objective analysis: conditioning and interpolation , 2001 .

[134]  Robert F. Cahalan Bounded cascade clouds: albedo and effective thickness , 1994 .