Convergence of Collocation Method with Delta Functions for Integral Equations of First Kind

Integral equations of first kind with periodic kernels arising in solving partial differential equations by interior source methods are considered. Existence and uniqueness of solution in appropriate spaces of linear analytic functionals is proved. Rate of convergence of collocation method with Dirac’s delta-functions as the trial functions is obtained in case of uniform meshes. In case of an analytic kernel the convergence rate is exponential.