MULTISCALE COMPUTATION OF A STEKLOV EIGENVALUE PROBLEM WITH RAPIDLY OSCILLATING COEFFICIENTS

In this paper we consider the multiscale computation of a Steklov eigenvalue problem with rapidly oscillating coefficients. The new contribution obtained in this paper is a superapproximation estimate for solving the homogenized Steklov eigenvalue problem and to present a multiscale numerical method. Numerical simulations are then carried out to validate the theoretical results reported in the present paper.

[1]  Dr. M. G. Worster Methods of Mathematical Physics , 1947, Nature.

[2]  R. Courant,et al.  Methods of Mathematical Physics, Vol. I , 1954 .

[3]  John E. Osborn,et al.  APPROXIMATION OF STEKLOV EIGENVALUES OF NON-SELFADJOINT SECOND ORDER ELLIPTIC OPERATORS , 1972 .

[4]  H. Weinberger Variational Methods for Eigenvalue Approximation , 1974 .

[5]  J. Osborn Spectral approximation for compact operators , 1975 .

[6]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[7]  Antonmaria A. Minzoni,et al.  A discontinuous Steklov problem with an application to water waves , 1979 .

[8]  M. Vanninathan Homogenization of eigenvalue problems in perforated domains , 1981 .

[9]  H. Ahn Vibrations of a pendulum consisting of a bob suspended from a wire: the method of integral equations , 1981 .

[10]  Gene H. Golub,et al.  Matrix computations , 1983 .

[11]  Differential operators with spectral parameter incompletely in the boundary conditions , 1990 .

[12]  M. Lobo,et al.  ON VIBRATIONS OF A BODY WITH MANY CONCENTRATED MASSES NEAR THE BOUNDARY , 1993 .

[13]  Michael Vogelius,et al.  First-Order Corrections to the Homogenized Eigenvalues of a Periodic Composite Medium , 1993, SIAM J. Appl. Math..

[14]  V. Zhikov,et al.  Homogenization of Differential Operators and Integral Functionals , 1994 .

[15]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[16]  S. Moskow,et al.  First-order corrections to the homogenised eigenvalues of a periodic composite medium. A convergence proof , 1997, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[17]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[18]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[19]  Thomas Y. Hou,et al.  Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients , 1999, Math. Comput..

[20]  E Weinan,et al.  The Heterogeneous Multi-Scale Method , 2002 .

[21]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[22]  JinHuang,et al.  THE MECHANICAL QUADRATURE METHODS AND THEIR EXTRAPOLATION FOR SOLVING BIE OF STEKLOV EIGENVALUE PROBLEMS , 2004 .

[23]  María G. Armentano,et al.  The effect of reduced integration in the Steklov eigenvalue problem , 2004 .

[24]  Andrey B. Andreev,et al.  Isoparametric finite-element approximation of a Steklov eigenvalue problem , 2004 .

[25]  Jun-zhi Cui,et al.  Asymptotic expansions and numerical algorithms of eigenvalues and eigenfunctions of the Dirichlet problem for second order elliptic equations in perforated domains , 2004, Numerische Mathematik.

[26]  D. Gómez,et al.  ON VIBRATING MEMBRANES WITH VERY HEAVY THIN INCLUSIONS , 2004 .

[27]  D. Onofrei,et al.  Γ-convergence for a fault model with slip-weakening friction and periodic barriers , 2005 .

[28]  Dorin Bucur,et al.  Asymptotic analysis and scaling of friction parameters , 2006 .

[29]  Antoine Henrot,et al.  Extremum Problems for Eigenvalues of Elliptic Operators , 2006 .

[30]  S. Nazarov,et al.  Spectral stiff problems in domains surrounded by thin bands: Asymptotic and uniform estimates for eigenvalues , 2006 .

[31]  E Weinan,et al.  Heterogeneous multiscale methods: A review , 2007 .

[32]  E. Pérez On periodic Steklov type eigenvalue problems on half-bands and the spectral homogenization problem , 2007 .

[33]  Weiying Zheng,et al.  An Adaptive Multilevel Method for Time-Harmonic Maxwell Equations with Singularities , 2007, SIAM J. Sci. Comput..

[34]  Claudio Padra,et al.  A posteriori error estimates for the Steklov eigenvalue problem , 2008 .

[35]  Henrique M. Versieux,et al.  Convergence Analysis for The Numerical Boundary Corrector for Elliptic Equations with Rapidly Oscillating Coefficients , 2008, SIAM J. Numer. Anal..

[36]  Li-qun Cao,et al.  Multiscale numerical algorithm for the elliptic eigenvalue problem with the mixed boundary in perforated domains , 2008 .

[37]  Yalchin Efendiev,et al.  Multiscale Finite Element Methods: Theory and Applications , 2009 .

[38]  Multiscale Finite Element Methods for Elliptic Equations , 2010 .

[39]  O. Oleinik,et al.  Mathematical Problems in Elasticity and Homogenization , 2012 .