MULTISCALE COMPUTATION OF A STEKLOV EIGENVALUE PROBLEM WITH RAPIDLY OSCILLATING COEFFICIENTS
暂无分享,去创建一个
[1] Dr. M. G. Worster. Methods of Mathematical Physics , 1947, Nature.
[2] R. Courant,et al. Methods of Mathematical Physics, Vol. I , 1954 .
[3] John E. Osborn,et al. APPROXIMATION OF STEKLOV EIGENVALUES OF NON-SELFADJOINT SECOND ORDER ELLIPTIC OPERATORS , 1972 .
[4] H. Weinberger. Variational Methods for Eigenvalue Approximation , 1974 .
[5] J. Osborn. Spectral approximation for compact operators , 1975 .
[6] A. Bensoussan,et al. Asymptotic analysis for periodic structures , 1979 .
[7] Antonmaria A. Minzoni,et al. A discontinuous Steklov problem with an application to water waves , 1979 .
[8] M. Vanninathan. Homogenization of eigenvalue problems in perforated domains , 1981 .
[9] H. Ahn. Vibrations of a pendulum consisting of a bob suspended from a wire: the method of integral equations , 1981 .
[10] Gene H. Golub,et al. Matrix computations , 1983 .
[11] Differential operators with spectral parameter incompletely in the boundary conditions , 1990 .
[12] M. Lobo,et al. ON VIBRATIONS OF A BODY WITH MANY CONCENTRATED MASSES NEAR THE BOUNDARY , 1993 .
[13] Michael Vogelius,et al. First-Order Corrections to the Homogenized Eigenvalues of a Periodic Composite Medium , 1993, SIAM J. Appl. Math..
[14] V. Zhikov,et al. Homogenization of Differential Operators and Integral Functionals , 1994 .
[15] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[16] S. Moskow,et al. First-order corrections to the homogenised eigenvalues of a periodic composite medium. A convergence proof , 1997, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[17] Thomas Y. Hou,et al. A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .
[18] P. Bassanini,et al. Elliptic Partial Differential Equations of Second Order , 1997 .
[19] Thomas Y. Hou,et al. Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients , 1999, Math. Comput..
[20] E Weinan,et al. The Heterogeneous Multi-Scale Method , 2002 .
[21] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[22] JinHuang,et al. THE MECHANICAL QUADRATURE METHODS AND THEIR EXTRAPOLATION FOR SOLVING BIE OF STEKLOV EIGENVALUE PROBLEMS , 2004 .
[23] María G. Armentano,et al. The effect of reduced integration in the Steklov eigenvalue problem , 2004 .
[24] Andrey B. Andreev,et al. Isoparametric finite-element approximation of a Steklov eigenvalue problem , 2004 .
[25] Jun-zhi Cui,et al. Asymptotic expansions and numerical algorithms of eigenvalues and eigenfunctions of the Dirichlet problem for second order elliptic equations in perforated domains , 2004, Numerische Mathematik.
[26] D. Gómez,et al. ON VIBRATING MEMBRANES WITH VERY HEAVY THIN INCLUSIONS , 2004 .
[27] D. Onofrei,et al. Γ-convergence for a fault model with slip-weakening friction and periodic barriers , 2005 .
[28] Dorin Bucur,et al. Asymptotic analysis and scaling of friction parameters , 2006 .
[29] Antoine Henrot,et al. Extremum Problems for Eigenvalues of Elliptic Operators , 2006 .
[30] S. Nazarov,et al. Spectral stiff problems in domains surrounded by thin bands: Asymptotic and uniform estimates for eigenvalues , 2006 .
[31] E Weinan,et al. Heterogeneous multiscale methods: A review , 2007 .
[32] E. Pérez. On periodic Steklov type eigenvalue problems on half-bands and the spectral homogenization problem , 2007 .
[33] Weiying Zheng,et al. An Adaptive Multilevel Method for Time-Harmonic Maxwell Equations with Singularities , 2007, SIAM J. Sci. Comput..
[34] Claudio Padra,et al. A posteriori error estimates for the Steklov eigenvalue problem , 2008 .
[35] Henrique M. Versieux,et al. Convergence Analysis for The Numerical Boundary Corrector for Elliptic Equations with Rapidly Oscillating Coefficients , 2008, SIAM J. Numer. Anal..
[36] Li-qun Cao,et al. Multiscale numerical algorithm for the elliptic eigenvalue problem with the mixed boundary in perforated domains , 2008 .
[37] Yalchin Efendiev,et al. Multiscale Finite Element Methods: Theory and Applications , 2009 .
[38] Multiscale Finite Element Methods for Elliptic Equations , 2010 .
[39] O. Oleinik,et al. Mathematical Problems in Elasticity and Homogenization , 2012 .