TEMPERATURE QUENCHING OF PHOTOLUMINESCENCE INTENSITIES IN UNDOPED AND DOPED GAN

This work discusses the temperature behavior of the various photoluminescence (PL) transitions observed in undoped, n- and p-doped GaN in the 9–300 K range. Samples grown using different techniques have been assessed. When possible, simple rate equations are used to describe the quenching of the transitions observed, in order to get a better insight on the mechanism involved. In undoped GaN, the temperature dependence of band edge excitonic lines is well described by assuming that the A exciton population is the leading term in the 50–300 K range. The activation energy for free exciton luminescence quenching is of the order of the A rydberg, suggesting that free hole release leads to nonradiative recombination. In slightly p-doped samples, the luminescence is dominated by acceptor related transitions, whose intensity is shown to be governed by free hole release. For high Mg doping, the luminescence at room temperature is dominated by blue PL in the 2.8–2.9 eV range, whose quenching activation energy is in...

[1]  J. Massies,et al.  Molecular Beam Epitaxy of GaN under N-rich Conditions using NH3 , 1999 .

[2]  B. Meyer Free and Bound Excitons in GaN Epitaxial Films , 1996 .

[3]  Marc Ilegems,et al.  Luminescence of Be‐ and Mg‐doped GaN , 1973 .

[4]  P. Vennégués,et al.  Comparative Study Of Gan Movpe Growth Processes Using Two Different “Surface Preparation-Carrier Gas” Combinations , 1998 .

[5]  B. Gil,et al.  Optical properties of GaN epilayers on sapphire , 1996 .

[6]  Song,et al.  Binding energy for the intrinsic excitons in wurtzite GaN. , 1996, Physical review. B, Condensed matter.

[7]  Eugene E. Haller,et al.  On p-type doping in GaN—acceptor binding energies , 1995 .

[8]  J. Hutchby,et al.  Photoluminescence of ion‐implanted GaN , 1976 .

[9]  M. Boćkowski,et al.  Luminescence and reflectivity in the exciton region of homoepitaxial GaN layers grown on GaN substrates , 1996 .

[10]  W. C. Hughes,et al.  Reactive MBE Growth of GaN and GaN:H on GaN/SiC Substrates , 1996 .

[11]  J. Im,et al.  Near-Bandgap Photoluminescence Decay Time in GaN Epitaxial Layers Grown on Sapphire , 1995 .

[12]  Hadis Morkoç,et al.  Mechanisms of band‐edge emission in Mg‐doped p‐type GaN , 1996 .

[13]  E. C. Carr,et al.  CORRELATION OF CATHODOLUMINESCENCE INHOMOGENEITY WITH MICROSTRUCTURAL DEFECTS IN EPITAXIAL GAN GROWN BY METALORGANIC CHEMICAL-VAPOR DEPOSITION , 1997 .

[14]  W. Shan,et al.  Temperature dependence of interband transitions in GaN grown by metalorganic chemical vapor deposition , 1995 .

[15]  V. M. Phanse,et al.  Optical spectroscopy of Si-related donor and acceptor levels in Si-doped GaN grown by hydride vapor phase epitaxy , 1998 .

[16]  M. Asif Khan,et al.  CW operation of short-channel GaN/AlGaN doped channel heterostructure field effect transistors at 10 GHz and 15 GHz , 1996, IEEE Electron Device Letters.

[17]  Manijeh Razeghi,et al.  Semiconductor ultraviolet detectors , 1996, Photonics West.

[18]  Michael Kunzer,et al.  Nature of the 2.8 eV photoluminescence band in Mg doped GaN , 1998 .

[19]  J. Massies,et al.  Molecular-beam epitaxy of gallium nitride on (0001) sapphire substrates using ammonia , 1998 .

[20]  J. S. Blakemore Semiconductor Statistics , 1962 .

[21]  Eugene E. Haller,et al.  Fine Structure of the 3.42 eV Emission Band in GaN , 1995 .

[22]  K. Heime,et al.  Compensation effects in Mg-doped GaN epilayers , 1998 .

[23]  Kovalev,et al.  Free exciton emission in GaN. , 1996, Physical review. B, Condensed matter.

[24]  R. Street,et al.  Activation of acceptors in Mg-doped GaN grown by metalorganic chemical vapor deposition , 1996 .

[25]  H. Amano,et al.  Free and bound excitons in thin wurtzite GaN layers on sapphire , 1996 .

[26]  K. Ebeling,et al.  Luminescence Related to Stacking Faults in Heterepitaxially Grown Wurtzite GaN , 1997 .

[27]  J. Massies,et al.  Comparative optical characterization of GaN grown by metal-organic vapor phase epitaxy, gas source molecular beam epitaxy and halide vapor phase epitaxy , 1997 .

[28]  Shuji Nakamura,et al.  The Blue Laser Diode: GaN based Light Emitters and Lasers , 1997 .

[29]  S. Haffouz,et al.  Luminescence and reflectivity studies of undoped, n- and p-doped GaN on (0001) sapphire , 1997 .

[30]  B. Jani,et al.  Alternative N precursors and Mg doped GaN grown by MOVPE , 1996 .

[31]  J. Massies,et al.  Si and Mg Doped Gan Layers Grown by Gas Source Molecular Beam Epitaxy Using Ammonia , 1997 .

[32]  Lester F. Eastman,et al.  The role of dislocation scattering in n-type GaN films , 1998 .

[33]  J. Massies,et al.  Ultraviolet GaN light-emitting diodes grown by molecular beam epitaxy using NH3 , 1998 .

[34]  J. Bergman,et al.  Photoluminescence of exciton-polaritons in GaN , 1997 .

[35]  Marc Ilegems,et al.  Absorption, Reflectance, and Luminescence of GaN Epitaxial Layers , 1971 .

[36]  Bo Monemar,et al.  Fundamental energy gap of GaN from photoluminescence excitation spectra , 1974 .

[37]  B. Šantić,et al.  Ionized donor bound excitons in GaN , 1997 .

[38]  Bo Monemar,et al.  Basic III–V nitride research – past, present and future , 1998 .

[39]  Isamu Akasaki,et al.  P-TYPE CONDUCTION IN MG-DOPED GAN AND AL0.08GA0.92N GROWN BY METALORGANIC VAPOR PHASE EPITAXY , 1994 .

[40]  Michael Schmidt,et al.  On the nature of the 3.41 eV luminescence in hexagonal GaN , 1998 .

[41]  S. Pearton,et al.  Photoluminescence, reflectance, and magnetospectroscopy of shallow excitons in GaN , 1997 .

[42]  J. Massies,et al.  Gas source molecular beam epitaxy of wurtzite GaN on sapphire substrates using GaN buffer layers , 1997 .

[43]  Yongjo Park,et al.  Excitation density dependence of photoluminescence in GaN:Mg , 1998 .