Practical Considerations for the Field Application of Miniaturized Portable Raman Instrumentation for the Identification of Minerals
暂无分享,去创建一个
[1] K. S. Krishnan,et al. A New Type of Secondary Radiation , 1928, Nature.
[2] Alex Ellery,et al. The role of Raman spectroscopy as an astrobiological tool in the exploration of Mars , 2004 .
[3] Rick Cox,et al. Evaluation of portable Raman spectrometer with 1064 nm excitation for geological and forensic applications. , 2012, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
[4] G. J. Taylor,et al. Raman efficiencies of natural rocks and minerals: performance of a remote Raman system for planetary exploration at a distance of 10 meters. , 2005, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
[5] H. Edwards,et al. FT-Raman spectroscopic study of calcium-rich and magnesium-rich carbonate minerals. , 2005, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
[6] E. Carter,et al. Assessing the viability of portable Raman spectroscopy for determining the geological source of obsidian , 2010 .
[7] B. Jolliff,et al. Characterization and comparison of structural and compositional features of planetary quadrilateral pyroxenes by Raman spectroscopy , 2001 .
[8] D. Ming,et al. Water alteration of rocks and soils on Mars at the Spirit rover site in Gusev crater , 2005, Nature.
[9] Jordana Blacksberg,et al. Time-resolved Raman spectroscopy for in situ planetary mineralogy. , 2010, Applied optics.
[10] John K. Warren,et al. Evaporites : sediments, resources and hydrocarbons , 2006 .
[11] A. Hamilton,et al. Raman spectra of mirabilite, Na2SO4·10H2O and the rediscovered metastable heptahydrate, Na2SO4·7H2O , 2010 .
[12] G. Southam,et al. Characterization of halophiles in natural MgSO4 salts and laboratory enrichment samples: Astrobiological implications for Mars , 2010 .
[13] Eine neue Erscheinung bei der Lichtzerstreuung in Krystallen , 2005, Naturwissenschaften.
[14] R. Cox,et al. Qualitative analysis and the answer box: a perspective on portable Raman spectroscopy. , 2010, Analytical chemistry.
[15] P. Vandenabeele,et al. Discrimination of zeolites and beryllium containing silicates using portable Raman spectroscometric equipment with near-infrared excitation. , 2012, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
[16] Shiv k. Sharma,et al. New trends in telescopic remote Raman spectroscopic instrumentation. , 2007, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
[17] S. Squyres,et al. Development of the Mars microbeam Raman spectrometer (MMRS) , 2003 .
[18] A. Davila,et al. Microbial colonization of Ca‐sulfate crusts in the hyperarid core of the Atacama Desert: implications for the search for life on Mars , 2011, Geobiology.
[19] R. Barbieri,et al. Endolithic microorganisms from spring mound evaporite deposits (southern Tunisia) , 2009 .
[20] H. Edwards,et al. Comparative Evaluation Of Raman Spectroscopy At Different Wavelengths For Extremophile Exemplars , 2005, Origins of Life and Evolution of Biospheres.
[21] M. Kühl,et al. An endoevaporitic microbial mat within a gypsum crust: Zonation of phototrophs, photopigments, and light penetration , 1995 .
[22] I. R. Lewis,et al. Handbook of Raman Spectroscopy: From the Research Laboratory to the Process Line , 2001 .
[23] J. Popp,et al. Raman Spectroscopy—A Powerful Tool for in situ Planetary Science , 2008 .
[24] R. Kaindl,et al. Raman spectroscopy: Analytical perspectives in mineralogical research , 2004 .
[25] M. Nurul Abedin,et al. Compact time-resolved remote Raman system for detection of anhydrous and hydrous minerals and ices for planetary exploration , 2010, Defense + Commercial Sensing.
[26] P. McMillan. Raman Spectroscopy in Mineralogy and Geochemistry , 1989 .
[27] John Parnell,et al. Raman spectroscopic analysis of cyanobacterial gypsum halotrophs and relevance for sulfate deposits on Mars. , 2005, The Analyst.
[28] L. Haskin,et al. Prototype Raman Spectroscopic Sensor for in Situ Mineral Characterization on Planetary Surfaces , 1998 .
[29] Nathaniel R. Gomer,et al. Remote Raman Spectroscopy for Planetary Exploration: A Review , 2012, Applied spectroscopy.
[30] K. Herkenhoff,et al. Sulfate deposition in subsurface regolith in Gusev crater, Mars , 2006 .
[31] H. Edwards,et al. Rapid outdoor non-destructive detection of organic minerals using a portable Raman spectrometer , 2009 .
[32] I-Ming Chou,et al. Sulfates on Mars: A systematic Raman spectroscopic study of hydration states of magnesium sulfates , 2006 .
[33] Jeffrey R. Johnson,et al. In Situ Evidence for an Ancient Aqueous Environment at Meridiani Planum, Mars , 2004, Science.
[34] H. Edwards,et al. Application of portable Raman instruments for fast and non-destructive detection of minerals on outcrops. , 2009, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
[35] Barry Lienert,et al. Pulsed remote Raman system for daytime measurements of mineral spectra. , 2005, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
[36] S. N. White,et al. Mineral–microbe interactions in deep-sea hydrothermal systems: a challenge for Raman spectroscopy , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[37] C. McKay,et al. Life at the edge: endolithic cyanobacteria in halite rocks from the hyperarid core of the Atacama Desert , 2006 .
[38] B. Jolliff,et al. CHARACTERIZATION OF NATURAL FELDSPARS BY RAMAN SPECTROSCOPY FOR FUTURE PLANETARY EXPLORATION , 2008 .
[39] H. Kornfeld. Bemerkung zu der Mitteilung von G. Landsberg und L. Mandelstam über eine neue Erscheinung in der Lichtzerstreuung in Krystallen , 1928, Naturwissenschaften.
[40] P. Vandenabeele,et al. On the definition of Raman spectroscopic detection limits for the analysis of biomarkers in solid matrices , 2012 .