Practical Considerations for the Field Application of Miniaturized Portable Raman Instrumentation for the Identification of Minerals

The nondestructive identification of both inorganic and organic compounds without the need for chemical or mechanical sample preparation is an advantage of the Raman spectroscopic analytical technique when applied in situ using miniaturized equipment for the geosciences. This is critically assessed here for several real life geoscientific scenarios in which several groups of minerals were analyzed with emphasis on evaporites, carbonates, and selected types of dark minerals and weak Raman scatterers. The role of individual analytical instrumental parameters such as focal plane precision, exposure time, and ambient light conditions that can affect the acquisition and interpretation of spectroscopic data from these specimens in field conditions was also evaluated.

[1]  K. S. Krishnan,et al.  A New Type of Secondary Radiation , 1928, Nature.

[2]  Alex Ellery,et al.  The role of Raman spectroscopy as an astrobiological tool in the exploration of Mars , 2004 .

[3]  Rick Cox,et al.  Evaluation of portable Raman spectrometer with 1064 nm excitation for geological and forensic applications. , 2012, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[4]  G. J. Taylor,et al.  Raman efficiencies of natural rocks and minerals: performance of a remote Raman system for planetary exploration at a distance of 10 meters. , 2005, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[5]  H. Edwards,et al.  FT-Raman spectroscopic study of calcium-rich and magnesium-rich carbonate minerals. , 2005, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[6]  E. Carter,et al.  Assessing the viability of portable Raman spectroscopy for determining the geological source of obsidian , 2010 .

[7]  B. Jolliff,et al.  Characterization and comparison of structural and compositional features of planetary quadrilateral pyroxenes by Raman spectroscopy , 2001 .

[8]  D. Ming,et al.  Water alteration of rocks and soils on Mars at the Spirit rover site in Gusev crater , 2005, Nature.

[9]  Jordana Blacksberg,et al.  Time-resolved Raman spectroscopy for in situ planetary mineralogy. , 2010, Applied optics.

[10]  John K. Warren,et al.  Evaporites : sediments, resources and hydrocarbons , 2006 .

[11]  A. Hamilton,et al.  Raman spectra of mirabilite, Na2SO4·10H2O and the rediscovered metastable heptahydrate, Na2SO4·7H2O , 2010 .

[12]  G. Southam,et al.  Characterization of halophiles in natural MgSO4 salts and laboratory enrichment samples: Astrobiological implications for Mars , 2010 .

[13]  Eine neue Erscheinung bei der Lichtzerstreuung in Krystallen , 2005, Naturwissenschaften.

[14]  R. Cox,et al.  Qualitative analysis and the answer box: a perspective on portable Raman spectroscopy. , 2010, Analytical chemistry.

[15]  P. Vandenabeele,et al.  Discrimination of zeolites and beryllium containing silicates using portable Raman spectroscometric equipment with near-infrared excitation. , 2012, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[16]  Shiv k. Sharma,et al.  New trends in telescopic remote Raman spectroscopic instrumentation. , 2007, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[17]  S. Squyres,et al.  Development of the Mars microbeam Raman spectrometer (MMRS) , 2003 .

[18]  A. Davila,et al.  Microbial colonization of Ca‐sulfate crusts in the hyperarid core of the Atacama Desert: implications for the search for life on Mars , 2011, Geobiology.

[19]  R. Barbieri,et al.  Endolithic microorganisms from spring mound evaporite deposits (southern Tunisia) , 2009 .

[20]  H. Edwards,et al.  Comparative Evaluation Of Raman Spectroscopy At Different Wavelengths For Extremophile Exemplars , 2005, Origins of Life and Evolution of Biospheres.

[21]  M. Kühl,et al.  An endoevaporitic microbial mat within a gypsum crust: Zonation of phototrophs, photopigments, and light penetration , 1995 .

[22]  I. R. Lewis,et al.  Handbook of Raman Spectroscopy: From the Research Laboratory to the Process Line , 2001 .

[23]  J. Popp,et al.  Raman Spectroscopy—A Powerful Tool for in situ Planetary Science , 2008 .

[24]  R. Kaindl,et al.  Raman spectroscopy: Analytical perspectives in mineralogical research , 2004 .

[25]  M. Nurul Abedin,et al.  Compact time-resolved remote Raman system for detection of anhydrous and hydrous minerals and ices for planetary exploration , 2010, Defense + Commercial Sensing.

[26]  P. McMillan Raman Spectroscopy in Mineralogy and Geochemistry , 1989 .

[27]  John Parnell,et al.  Raman spectroscopic analysis of cyanobacterial gypsum halotrophs and relevance for sulfate deposits on Mars. , 2005, The Analyst.

[28]  L. Haskin,et al.  Prototype Raman Spectroscopic Sensor for in Situ Mineral Characterization on Planetary Surfaces , 1998 .

[29]  Nathaniel R. Gomer,et al.  Remote Raman Spectroscopy for Planetary Exploration: A Review , 2012, Applied spectroscopy.

[30]  K. Herkenhoff,et al.  Sulfate deposition in subsurface regolith in Gusev crater, Mars , 2006 .

[31]  H. Edwards,et al.  Rapid outdoor non-destructive detection of organic minerals using a portable Raman spectrometer , 2009 .

[32]  I-Ming Chou,et al.  Sulfates on Mars: A systematic Raman spectroscopic study of hydration states of magnesium sulfates , 2006 .

[33]  Jeffrey R. Johnson,et al.  In Situ Evidence for an Ancient Aqueous Environment at Meridiani Planum, Mars , 2004, Science.

[34]  H. Edwards,et al.  Application of portable Raman instruments for fast and non-destructive detection of minerals on outcrops. , 2009, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[35]  Barry Lienert,et al.  Pulsed remote Raman system for daytime measurements of mineral spectra. , 2005, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[36]  S. N. White,et al.  Mineral–microbe interactions in deep-sea hydrothermal systems: a challenge for Raman spectroscopy , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[37]  C. McKay,et al.  Life at the edge: endolithic cyanobacteria in halite rocks from the hyperarid core of the Atacama Desert , 2006 .

[38]  B. Jolliff,et al.  CHARACTERIZATION OF NATURAL FELDSPARS BY RAMAN SPECTROSCOPY FOR FUTURE PLANETARY EXPLORATION , 2008 .

[39]  H. Kornfeld Bemerkung zu der Mitteilung von G. Landsberg und L. Mandelstam über eine neue Erscheinung in der Lichtzerstreuung in Krystallen , 1928, Naturwissenschaften.

[40]  P. Vandenabeele,et al.  On the definition of Raman spectroscopic detection limits for the analysis of biomarkers in solid matrices , 2012 .