Interval Temporal Logics over Finite Linear Orders: the Complete Picture

Interval temporal logics provide a natural framework for temporal reasoning about interval structures over linearly ordered domains, where intervals are taken as the primitive ontological entities. In this paper, we identify all fragments of Halpern and Shoham's interval temporal logic HS whose finite satisfiability problem is decidable. We classify them in terms of both relative expressive power and complexity. We show that there are exactly 62 expressively-different decidable fragments, whose complexity ranges from NP-complete to non-primitive recursive (all other HS fragments have been already shown to be undecidable).

[1]  Guido Sciavicco,et al.  Decidability of Interval Temporal Logics over Split-Frames via Granularity , 2002, JELIA.

[2]  Davide Bresolin,et al.  On Begins, Meets and before , 2012, Int. J. Found. Comput. Sci..

[3]  Valentin Goranko,et al.  Interval Temporal Logics: a Journey , 2013, Bull. EATCS.

[4]  Jakub Michaliszyn,et al.  The Ultimate Undecidability Result for the Halpern-Shoham Logic , 2011, 2011 IEEE 26th Annual Symposium on Logic in Computer Science.

[5]  Davide Bresolin,et al.  Decidable and Undecidable Fragments of Halpern and Shoham's Interval Temporal Logic: Towards a Complete Classification , 2008, LPAR.

[6]  Yde Venema,et al.  Expressiveness and Completeness of an Interval Tense Logic , 1990, Notre Dame J. Formal Log..

[7]  Philippe Schnoebelen,et al.  Verifying lossy channel systems has nonprimitive recursive complexity , 2002, Inf. Process. Lett..

[8]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[9]  Davide Bresolin,et al.  An Optimal Decision Procedure for Right Propositional Neighborhood Logic , 2006, Journal of Automated Reasoning.

[10]  Gabriele Puppis,et al.  Maximal Decidable Fragments of Halpern and Shoham's Modal Logic of Intervals , 2010, ICALP.

[11]  Yoav Shoham,et al.  A propositional modal logic of time intervals , 1991, JACM.

[12]  Davide Bresolin,et al.  The Dark Side of Interval Temporal Logic: Sharpening the Undecidability Border , 2011, 2011 Eighteenth International Symposium on Temporal Representation and Reasoning.

[13]  Valentin Goranko,et al.  Expressiveness of the Interval Logics of Allen's Relations on the Class of All Linear Orders: Complete Classification , 2011, IJCAI.

[14]  Davide Bresolin,et al.  Tableau-based decision procedures for the logics of subinterval structures over dense orderings , 2008 .

[15]  Angelo Montanari,et al.  Decidability of the Logics of the Reflexive Sub-interval and Super-interval Relations over Finite Linear Orders , 2010, 2010 17th International Symposium on Temporal Representation and Reasoning.

[16]  Valentin Goranko,et al.  A Road Map of Interval Temporal Logics and Duration Calculi , 2004, J. Appl. Non Class. Logics.

[17]  Davide Bresolin,et al.  Propositional interval neighborhood logics: Expressiveness, decidability, and undecidable extensions , 2009, Ann. Pure Appl. Log..

[18]  Guido Sciavicco,et al.  Decidability of the Interval Temporal Logic ABB over the Natural Numbers , 2010, STACS.

[19]  Davide Bresolin,et al.  Tableaux for Logics of Subinterval Structures over Dense Orderings , 2010, J. Log. Comput..

[20]  D. Gabbay,et al.  Many-Dimensional Modal Logics: Theory and Applications , 2003 .

[21]  Davide Bresolin,et al.  A Tableau-Based Decision Procedure for Right Propositional Neighborhood Logic , 2005, TABLEAUX.

[22]  Valentin Goranko,et al.  Propositional Interval Neighborhood Temporal Logics , 2003, J. Univers. Comput. Sci..