The Gemini Deep Deep Survey. VIII. When Did Early-Type Galaxies Form?

We have used the Hubble Space Telescope's Advanced Camera for Surveys (Ford et al. 2003) to measure the cumulative mass density in morphologically selected early-type galaxies over the redshift range 0.8 < z < 1.7. Our imaging data set covers four well-separated sight lines and is roughly intermediate (in terms of both depth and area) between the GOODS/GEMS imaging data and the images obtained in the Hubble Deep Field campaigns. Our images contain 144 galaxies with ultradeep spectroscopy obtained as part of the Gemini Deep Deep Survey. These images have been analyzed using a new purpose-written morphological analysis code, which improves the reliability of morphological classifications by adopting a quasi-Petrosian image thresholding technique. We find that at z ~ 1 about 80% of the stars living in the most massive galaxies reside in early-type systems. This fraction is similar to that seen in the local universe. However, we detect very rapid evolution in this fraction over the range 0.8 < z < 1.7, suggesting that over this redshift range the strong morphology-mass relationship seen in the nearby universe is beginning to fall into place. By comparing our images to published spectroscopic classifications, we show that little ambiguity exists in connecting spectral classes to morphological classes for spectroscopically quiescent systems. However, the mass density function of early-type galaxies is evolving more rapidly than that of spectroscopically quiescent systems, which we take as further evidence that we are witnessing the formation of massive early-type galaxies over the 0.8 < z < 1.7 redshift range.

[1]  M. Kajisawa,et al.  Evolution of the Dependence of Rest-Frame Color and Morphology Distribution on Stellar Mass for Galaxies in the Hubble Deep Field-North , 2004, astro-ph/0409394.

[2]  K. Glazebrook,et al.  Microslit Nod‐Shuffle Spectroscopy: A Technique for Achieving Very High Densities of Spectra , 2000, astro-ph/0011104.

[3]  Volker Springel,et al.  The Many lives of AGN: Cooling flows, black holes and the luminosities and colours of galaxies , 2006, astro-ph/0602065.

[4]  University of Toronto,et al.  A New Approach to Galaxy Morphology. I. Analysis of the Sloan Digital Sky Survey Early Data Release , 2003, astro-ph/0301239.

[5]  G. Hill,et al.  Specific Star Formation Rates to Redshift 1.5 , 2004, astro-ph/0412358.

[6]  Christopher J. Conselice,et al.  The Relationship between Stellar Light Distributions of Galaxies and Their Formation Histories , 2003 .

[7]  Fabio Governato,et al.  Forming disc galaxies in ΛCDM simulations , 2006 .

[8]  The K20 survey. VI. The distribution of the stellar masses in galaxies up to z 2 , 2004, astro-ph/0405055.

[9]  Karl Glazebrook,et al.  Hubble Space Telescope Imaging of the CFRS and LDSS Redshift Surveys. I. Morphological Properties , 1998 .

[10]  The Galaxy Mass Function up to z=4 in the GOODS-MUSIC sample: into the epoch of formation of massive galaxies ⋆ , 2006, astro-ph/0609068.

[11]  J. Brinkmann,et al.  Galaxy halo masses and satellite fractions from galaxy–galaxy lensing in the Sloan Digital Sky Survey: stellar mass, luminosity, morphology and environment dependencies , 2005, astro-ph/0511164.

[12]  S. J. Lilly,et al.  The Canada-France Redshift Survey. VI. Evolution of the Galaxy Luminosity Function to Z approximately 1 , 1995 .

[13]  Evolutionary synthesis of galaxies at high spectral resolution with the code PEGASE-HR. Metallicity and age tracers , 2004, astro-ph/0408419.

[14]  A. Szalay,et al.  Galaxy Luminosity Functions to z~1 from DEEP2 and COMBO-17: Implications for Red Galaxy Formation , 2005, astro-ph/0506044.

[15]  Large structures and galaxy evolution in COSMOS at z < 1.1 , 2006, astro-ph/0612384.

[16]  C. Baugh,et al.  Evolution of the Hubble sequence in hierarchical models for galaxy formation , 1996, astro-ph/9602085.

[17]  I. Hook,et al.  A high abundance of massive galaxies 3–6 billion years after the Big Bang , 2004, Nature.

[18]  S. M. Fall,et al.  The Morphological Diversities among Star-forming Galaxies at High Redshifts in the Great Observatories Origins Deep Survey , 2006, astro-ph/0606696.

[19]  B. Krauskopf,et al.  Proc of SPIE , 2003 .

[20]  S. E. Persson,et al.  THE LAS CAMPANAS INFRARED SURVEY. III. THE H-BAND IMAGING SURVEY AND THE NEAR-INFRARED AND OPTICAL PHOTOMETRIC CATALOGS , 2001, astro-ph/0108171.

[21]  Constraints on a Universal IMF from UV to Near-IR Galaxy Luminosity Densities , 2003, astro-ph/0304423.

[22]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[23]  Casey Papovich,et al.  The Luminosity, Stellar Mass, and Number Density Evolution of Field Galaxies of Known Morphology from z = 0.5 to 3 , 2004, astro-ph/0405001.

[24]  J. Brinchmann,et al.  The Mass Assembly and Star Formation Characteristics of Field Galaxies of Known Morphology , 2000, The Astrophysical journal.

[25]  Large Disklike Galaxies at High Redshift , 2003, astro-ph/0306062.

[26]  et al,et al.  The Luminosity Function of Galaxies from SDSS Commissioning Data , 2000 .

[27]  Stefano Casertano,et al.  Morphologies and Spectral Energy Distributions of Extremely Red Galaxies in the GOODS-South Field , 2003, astro-ph/0309187.

[28]  Heidelberg,et al.  Nearly 5000 Distant Early-Type Galaxies in COMBO-17: A Red Sequence and Its Evolution since z ~ 1 , 2003, astro-ph/0303394.

[29]  University of Cambridge,et al.  The star formation history of the Hubble sequence: spatially resolved colour distributions of intermediate-redshift galaxies in the Hubble Deep Field , 1999 .

[30]  Patrick J. McCarthy,et al.  The Gemini Deep Deep Survey , 2002 .

[31]  R. Nichol,et al.  Stellar masses and star formation histories for 105 galaxies from the Sloan Digital Sky Survey , 2002, astro-ph/0204055.

[32]  UCOLick,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 6/22/04 THE MASS ASSEMBLY HISTORY OF FIELD GALAXIES: DETECTION OF AN EVOLVING MASS LIMIT FOR STAR FORMING GALAXIES , 2005 .

[33]  G. Canalizo,et al.  A Disk Galaxy of Old Stars at z ~ 2.5 , 2003, astro-ph/0312550.

[34]  Karl Glazebrook,et al.  The morphologies of distant galaxies. II. Classifications from the Hubble Space Telescope medium deep survey , 1996 .

[35]  Old galaxies in the young Universe , 2004, Nature.

[36]  Ssc,et al.  Spitzer Observations of Massive, Red Galaxies at High Redshift , 2005, astro-ph/0511289.

[37]  C. Conselice,et al.  The Assembly of Diversity in the Morphologies and Stellar Populations of High-Redshift Galaxies , 2005, astro-ph/0501088.

[38]  E. Bell,et al.  The Optical and Near-Infrared Properties of Galaxies. I. Luminosity and Stellar Mass Functions , 2003, astro-ph/0302543.

[39]  P. Dokkum,et al.  The Recent and Continuing Assembly of Field Elliptical Galaxies by Red Mergers , 2005, astro-ph/0506661.

[40]  G. Kauffmann,et al.  The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colour , 2005, astro-ph/0508046.

[41]  Henry C. Ferguson,et al.  The Evolution of the Global Stellar Mass Density at 0 < z < 3 , 2002, astro-ph/0212242.

[42]  R. Ellis,et al.  COSMOS: Hubble Space Telescope Observations , 2006, astro-ph/0612306.

[43]  I. Hook,et al.  Evolved Galaxies at z > 1.5 from the Gemini Deep Deep Survey: The Formation Epoch of Massive Stellar Systems , 2004, astro-ph/0408367.

[44]  Patrick J. McCarthy,et al.  The Gemini Deep Deep Survey: I. Introduction to the Survey, Catalogs and Composite Spectra , 2004, astro-ph/0402436.

[45]  M. SubbaRao,et al.  The Luminosity Function of Morphologically Classified Galaxies in the Sloan Digital Sky Survey , 2002, astro-ph/0212405.

[46]  J. Dunlop,et al.  The star-formation history of the Universe from the stellar populations of nearby galaxies , 2004, Nature.

[47]  V. Debattista,et al.  Double‐barred galaxies at intermediate redshifts: a feasibility study , 2005, astro-ph/0509610.

[48]  S. J. Lilly,et al.  HST imaging of CFRS and LDSS galaxies - I: Morphological Properties , 1997 .

[49]  Haojing Yan,et al.  Candidates of z ≃ 5.5-7 Galaxies in the Hubble Space Telescope Ultra Deep Field , 2004 .

[50]  Chemical enrichment and the origin of the colour-magnitude relation of elliptical galaxies in a hierarchical merger model , 1998 .

[51]  A. Cimatti,et al.  A catalogue of the Chandra Deep Field South with multi-colour classification and photometric redshifts from COMBO-17 , 2004, astro-ph/0403666.

[52]  S. J. Lilly,et al.  COSMOS Morphological Classification with the Zurich Estimator of Structural Types (ZEST) and the Evolution Since z = 1 of the Luminosity Function of Early, Disk, and Irregular Galaxies* , 2006 .

[53]  Granada,et al.  Galaxies in the Hubble Ultra Deep Field. I. Detection, Multiband Photometry, Photometric Redshifts, and Morphology , 2006, astro-ph/0605262.

[54]  A. Naim,et al.  A Comparative study of morphological classifications of APM galaxies , 1995 .

[55]  P. Madau,et al.  A NEW NONPARAMETRIC APPROACH TO GALAXY MORPHOLOGICAL CLASSIFICATION , 2003, astro-ph/0311352.

[56]  L. Cowie,et al.  New Insight on Galaxy Formation and Evolution from Keck Spectroscopy of the Hawaii Deep Fields , 1996, astro-ph/9606079.

[57]  Mark Clampin,et al.  Overview of the Advanced Camera for Surveys on-orbit performance , 2003, SPIE Astronomical Telescopes + Instrumentation.

[58]  Tadayuki Kodama,et al.  Down-sizing in galaxy formation at z~1 , 2004 .

[59]  R. Bouwens,et al.  Internal Color Properties of Resolved Spheroids in the Deep Hubble Space Telescope Advanced Camera for Surveys Field of UGC 10214 , 2004 .

[60]  Chien Y. Peng,et al.  GEMS: Galaxy Evolution from Morphologies and SEDs , 2004 .

[61]  J. Peacock,et al.  Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.

[62]  G. Zamorani,et al.  The K20 survey - I. Disentangling old and dusty star-forming galaxies in the ERO population , 2001 .

[63]  Takashi Hattori,et al.  A galaxy at a redshift z = 6.96 , 2006, Nature.

[64]  H.-W. Chen,et al.  ApJ in press Preprint typeset using L ATEX style emulateapj v. 9/08/03 THE GEMINI DEEP DEEP SURVEY. VII. THE REDSHIFT EVOLUTION OF THE MASS-METALLICITY RELATION 1,2 , 2005 .

[65]  Garching,et al.  Substructures in cold dark matter haloes , 2003, astro-ph/0306205.

[66]  K. Glazebrook,et al.  Constraints on a Universal Stellar Initial Mass Function from Ultraviolet to Near-Infrared Galaxy Luminosity Densities , 2003 .

[67]  P. McCarthy,et al.  Gemini Deep Deep Survey. VI. Massive Hδ-strong Galaxies at z ≃ 1 , 2005, astro-ph/0503401.

[68]  V. Petrosian,et al.  Surface brightness and evolution of galaxies , 1976 .

[69]  COSMIC STAR FORMATION HISTORY AND ITS DEPENDENCE ON GALAXY STELLAR MASS , 2004, astro-ph/0411775.

[70]  Joel R. Primack,et al.  The Rest-Frame Far-Ultraviolet Morphologies of Star-Forming Galaxies at z ~ 1.5 and 4 , 2006 .

[71]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[72]  A. Heavens,et al.  The Ages, Metallicities, and Star Formation Histories of Early-Type Galaxies in the SDSS , 2006, astro-ph/0610724.

[73]  H. Rix,et al.  The stellar masses of 25 000 galaxies at 0.2 ≤ z ≤ 1.0 estimated by the COMBO-17 survey , 2006 .