Symmetry Classification of Many-Body Lindbladians: Tenfold Way and Beyond

We perform a systematic symmetry classification of many-body Lindblad superoperators describing general (interacting) open quantum systems coupled to a Markovian environment. Our classification is based on the behavior of the many-body Lindbladian under antiunitary symmetries and unitary involutions. We find that Hermiticity preservation reduces the number of symmetry classes, while trace preservation and complete positivity do not, and that the set of admissible classes depends on the presence of additional unitary symmetries: in their absence or in symmetry sectors containing steady states, many-body Lindbladians belong to one of ten non-Hermitian symmetry classes; if however, there are additional symmetries and we consider non-steady-state sectors, they belong to a different set of 19 classes. In both cases, it does not include classes with Kramer's degeneracy. Remarkably, our classification admits a straightforward generalization to the case of non-Markovian, and even non-trace-preserving, open quantum dynamics. While the abstract classification is completely general, we then apply it to general (long-range, interacting, spatially inhomogeneous) spin-$1/2$ chains. We explicitly build examples in all ten classes of Lindbladians in steady-state sectors, describing standard physical processes such as dephasing, spin injection and absorption, and incoherent hopping, thus illustrating the relevance of our classification for practical physics applications. Finally, we show that the examples in each class display unique random-matrix correlations. To fully resolve all symmetries, we employ the combined analysis of bulk complex spacing ratios and the overlap of eigenvector pairs related by symmetry operations. We further find that statistics of levels constrained onto the real and imaginary axes or close to the origin are not universal due to spontaneous breaking of Lindbladian PT symmetry.

[1]  J. Verbaarschot,et al.  Sixfold Way of Traversable Wormholes in the Sachdev-Ye-Kitaev Model. , 2023, Physical review letters.

[2]  S. Ryu,et al.  Symmetry of open quantum systems: Classification of dissipative quantum chaos , 2022, 2212.00605.

[3]  J. Verbaarschot,et al.  Universality and its limits in non-Hermitian many-body quantum chaos using the Sachdev-Ye-Kitaev model , 2022, Physical Review D.

[4]  P. Ribeiro,et al.  Spectral and steady-state properties of fermionic random quadratic Liouvillians , 2022, 2210.07959.

[5]  Sparsh Gupta,et al.  Spectral properties of disordered interacting non-Hermitian systems , 2022, Physical Review B.

[6]  D. Huse,et al.  Many-Body Quantum Chaos and Emergence of Ginibre Ensemble. , 2022, Physical review letters.

[7]  Zhenyu Xiao,et al.  Level statistics of real eigenvalues in non-Hermitian systems , 2022, Physical Review Research.

[8]  Masahito Ueda,et al.  Lindbladian Many-Body Localization , 2022, 2206.02984.

[9]  L. M. Sieberer,et al.  Relaxation to a Parity-Time Symmetric Generalized Gibbs Ensemble after a Quantum Quench in a Driven-Dissipative Kitaev Chain. , 2022, Physical review letters.

[10]  E. Berg,et al.  Probabilistic error cancellation with sparse Pauli–Lindblad models on noisy quantum processors , 2022, Nature Physics.

[11]  Ken Mochizuki,et al.  Topological phases protected by shifted sublattice symmetry in dissipative quantum systems , 2022, Physical Review B.

[12]  Ioachim G. Dusa,et al.  Approximation formula for complex spacing ratios in the Ginibre ensemble. , 2022, Physical review. E.

[13]  P. Ribeiro,et al.  Lindbladian dissipation of strongly-correlated quantum matter , 2021, Physical Review Research.

[14]  J. Verbaarschot,et al.  Symmetry Classification and Universality in Non-Hermitian Many-Body Quantum Chaos by the Sachdev-Ye-Kitaev Model , 2021, Physical Review X.

[15]  N. Cooper,et al.  Kramers' degeneracy for open systems in thermal equilibrium , 2021, Physical Review B.

[16]  W. Tarnowski,et al.  Random generators of Markovian evolution: A quantum-classical transition by superdecoherence. , 2021, Physical review. E.

[17]  T. Sasamoto,et al.  $\mathcal{PT}$ phase transition in open quantum systems with Lindblad dynamics , 2021, 2104.07349.

[18]  T. Wettig,et al.  New universality classes of the non-Hermitian Dirac operator in QCD-like theories , 2021, Physical Review D.

[19]  T. Prosen,et al.  Spectral Statistics of Non-Hermitian Matrices and Dissipative Quantum Chaos. , 2021, Physical review letters.

[20]  T. Ohtsuki,et al.  Universality Classes of the Anderson Transitions Driven by Non-Hermitian Disorder. , 2020, Physical review letters.

[21]  T. Prosen,et al.  Integrable nonunitary open quantum circuits , 2020, 2011.06565.

[22]  S. Diehl,et al.  Symmetry Classes of Open Fermionic Quantum Matter , 2020, Physical Review X.

[23]  T. Prosen,et al.  Spectral transitions and universal steady states in random Kraus maps and circuits , 2020, Physical Review B.

[24]  Y. Ashida,et al.  Non-Hermitian physics , 2020, Advances in Physics.

[25]  T. A. Whitelaw Semigroups , 2020, Introduction To Abstract Algebra.

[26]  P. Rabl,et al.  Emergence of PT-symmetry breaking in open quantum systems , 2020, 2003.02265.

[27]  G. Akemann,et al.  Determinantal Structure and Bulk Universality of Conditional Overlaps in the Complex Ginibre Ensemble , 2019, Acta Physica Polonica B.

[28]  F. Nori,et al.  Validity of mean-field theory in a dissipative critical system: Liouvillian gap, PT -symmetric antigap, and permutational symmetry in the XYZ model , 2019, 1912.07570.

[29]  Kevin C. Wang,et al.  Hierarchy of Relaxation Timescales in Local Random Liouvillians. , 2019, Physical review letters.

[30]  B. Shklovskii,et al.  Anderson transition in three-dimensional systems with non-Hermitian disorder , 2019, Physical Review B.

[31]  T. Prosen,et al.  Complex Spacing Ratios: A Signature of Dissipative Quantum Chaos , 2019, Physical Review X.

[32]  G. Akemann,et al.  Universal Signature from Integrability to Chaos in Dissipative Open Quantum Systems. , 2019, Physical review letters.

[33]  N. Cooper,et al.  Tenfold Way for Quadratic Lindbladians. , 2019, Physical review letters.

[34]  Shu Chen,et al.  Topological classification of defects in non-Hermitian systems , 2019, Physical Review B.

[35]  Masahito Ueda,et al.  Universality classes of non-Hermitian random matrices , 2019 .

[36]  Hengyun Zhou,et al.  Periodic table for topological bands with non-Hermitian symmetries , 2018, Physical Review B.

[37]  Masahito Ueda,et al.  Symmetry and Topology in Non-Hermitian Physics , 2018, Physical Review X.

[38]  Masahito Ueda,et al.  Non-Hermitian Many-Body Localization. , 2018, Physical review letters.

[39]  Simon Lieu,et al.  Topological symmetry classes for non-Hermitian models and connections to the bosonic Bogoliubov–de Gennes equation , 2018, Physical Review B.

[40]  Masahito Ueda,et al.  Topological unification of time-reversal and particle-hole symmetries in non-Hermitian physics , 2018, Nature Communications.

[41]  V. Gritsev,et al.  Symmetry-protected coherent relaxation of open quantum systems , 2018, 1802.05293.

[42]  Paul Bourgade,et al.  The distribution of overlaps between eigenvectors of Ginibre matrices , 2018, Probability Theory and Related Fields.

[43]  Yan V Fyodorov,et al.  On Statistics of Bi-Orthogonal Eigenvectors in Real and Complex Ginibre Ensembles: Combining Partial Schur Decomposition with Supersymmetry , 2017, Communications in Mathematical Physics.

[44]  T. Prosen PT-symmetric quantum Liouvillean dynamics. , 2012, Physical review letters.

[45]  T. Prosen,et al.  A note on symmetry reductions of the Lindblad equation: transport in constrained open spin chains , 2012, 1203.0943.

[46]  G. Akemann Non-Hermitian extensions of Wishart random matrix ensembles , 2011, 1104.5203.

[47]  Li Li,et al.  Canonical form of master equations and characterization of non-Markovianity , 2010, 1009.0845.

[48]  G. Akemann,et al.  Wigner surmise for Hermitian and non-Hermitian chiral random matrices. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  G. Akemann,et al.  Gap probabilities in non-Hermitian random matrix theory , 2009, 0901.0897.

[50]  U. Magnea Random matrices beyond the Cartan classification , 2007, 0707.0418.

[51]  P. Forrester,et al.  Eigenvalue statistics of the real Ginibre ensemble. , 2007, Physical review letters.

[52]  G. Akemann,et al.  Statistics of real eigenvalues in Ginibre's ensemble of random real matrices. , 2005, Physical review letters.

[53]  J. Osborn Universal results from an alternate random-matrix model for QCD with a baryon chemical potential. , 2004, Physical review letters.

[54]  D. Bernard,et al.  A Classification of Non-Hermitian Random Matrices , 2001, cond-mat/0110649.

[55]  J. Chalker,et al.  Statistical properties of eigenvectors in non-Hermitian Gaussian random matrix ensembles , 1999, cond-mat/9906279.

[56]  M. Nowak,et al.  Correlations of eigenvectors for non-Hermitian random-matrix models. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[57]  J. Chalker,et al.  EIGENVECTOR STATISTICS IN NON-HERMITIAN RANDOM MATRIX ENSEMBLES , 1998, cond-mat/9809090.

[58]  J. Verbaarschot,et al.  Random matrix triality at nonzero chemical potential , 1997, hep-lat/9704007.

[59]  Y. Fyodorov,et al.  ALMOST HERMITIAN RANDOM MATRICES : CROSSOVER FROM WIGNER-DYSON TO GINIBRE EIGENVALUE STATISTICS , 1997, cond-mat/9703152.

[60]  G. Akemann,et al.  Universality of random matrices in the microscopic limit and the Dirac operator spectrum , 1996, hep-th/9609174.

[61]  A. Altland,et al.  Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures , 1996, cond-mat/9602137.

[62]  J. Verbaarschot,et al.  Spectrum of the QCD Dirac operator and chiral random matrix theory. , 1994, Physical review letters.

[63]  J. Verbaarschot,et al.  Spectral density of the QCD Dirac operator near zero virtuality. , 1993, Physical review letters.

[64]  Sommers,et al.  Eigenvalue statistics of random real matrices. , 1991, Physical review letters.

[65]  O. Bohigas,et al.  Characterization of chaotic quantum spectra and universality of level fluctuation laws , 1984 .

[66]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[67]  E. Sudarshan,et al.  Completely Positive Dynamical Semigroups of N Level Systems , 1976 .

[68]  J. Ginibre Statistical Ensembles of Complex, Quaternion, and Real Matrices , 1965 .

[69]  Masahito Ueda,et al.  Title Symmetry and Topology in Non-Hermitian Physics , 2021 .

[70]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[71]  V. S. Popov,et al.  Relaxation of Quantum Systems with Equidistant Spectra , 1969 .