Properties of hybrid entanglement between discrete- and continuous-variable states of light

We discuss some of the main features of a recently-generated form of hybrid entanglement between discrete- and continuous-variable states of light. Ideally, such a kind of entanglement should involve single-photon and coherent states as key representatives of the respective categories of states. Here we investigate the characteristics and limits of a scheme that, relying on a superposition of photon-creation operators onto two distinct modes, realizes the above ideal form of hybrid entanglement in an approximate way.

[1]  Chiara Vitelli,et al.  Entanglement test on a microscopic-macroscopic system. , 2008, Physical review letters.

[2]  Christopher C. Gerry,et al.  GENERATION OF OPTICAL MACROSCOPIC QUANTUM SUPERPOSITION STATES VIA STATE REDUCTION WITH A MACH-ZEHNDER INTERFEROMETER CONTAINING A KERR MEDIUM , 1999 .

[3]  Alessandro Zavatta,et al.  Probing Quantum Commutation Rules by Addition and Subtraction of Single Photons to/from a Light Field , 2007, Science.

[4]  M. Bellini,et al.  Quantum-to-Classical Transition with Single-Photon-Added Coherent States of Light , 2004, Science.

[5]  N. Gisin,et al.  Displacement of entanglement back and forth between the micro and macro domains , 2012, Nature Physics.

[6]  E. Schrödinger Die gegenwärtige Situation in der Quantenmechanik , 2005, Naturwissenschaften.

[7]  Raymond Kapral,et al.  Quantum dynamics in open quantum-classical systems , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[8]  E. Schrödinger Die gegenwärtige Situation in der Quantenmechanik , 1935, Naturwissenschaften.

[9]  W. Munro,et al.  A near deterministic linear optical CNOT gate , 2004 .

[10]  Seung-Woo Lee,et al.  Generation of hybrid entanglement of light , 2014, Nature Photonics.

[11]  Remote preparation of arbitrary time-encoded single-photon ebits. , 2005, Physical review letters.

[12]  Minsu Kang,et al.  Experimental hybrid entanglement between quantum and classical states of light , 2014 .

[13]  Hyunseok Jeong,et al.  Violation of Bell's inequality using imperfect photodetectors with optical hybrid entanglement , 2013 .

[14]  Seung-Woo Lee,et al.  Erratum: Near-deterministic quantum teleportation and resource-efficient quantum computation using linear optics and hybrid qubits [Phys. Rev. A87, 022326 (2013)] , 2013 .

[15]  Karen Willcox,et al.  Kinetics and kinematics for translational motions in microgravity during parabolic flight. , 2009, Aviation, space, and environmental medicine.

[16]  Jinhyoung Lee,et al.  Partial teleportation of entanglement in a noisy environment , 2000, quant-ph/0003060.

[17]  Peter van Loock,et al.  Optical hybrid approaches to quantum information , 2010, 1002.4788.

[18]  Franson,et al.  Bell inequality for position and time. , 1989, Physical review letters.

[19]  N. Gisin,et al.  Pulsed Energy-Time Entangled Twin-Photon Source for Quantum Communication , 1999 .

[20]  D. Cory,et al.  Probing Quantum Commutation Rules by Addition and Subtraction of Single Photons to / from a Light Field , 2007 .

[21]  A. I. Lvovsky,et al.  Iterative maximum-likelihood reconstruction in quantum homodyne tomography , 2003, quant-ph/0311097.

[22]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[23]  A. I. Lvovsky,et al.  Observation of micro–macro entanglement of light , 2013 .

[24]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[25]  M. Silva,et al.  Computation with coherent states via teleportations to and from a quantum bus , 2008, 0804.4344.

[26]  M. Kim,et al.  Experimental demonstration of the bosonic commutation relation via superpositions of quantum operations on thermal light fields. , 2009, Physical review letters.

[27]  Seung-Woo Lee,et al.  Near-deterministic quantum teleportation and resource-efficient quantum computation using linear optics and hybrid qubits , 2011, 1112.0825.

[28]  Agarwal,et al.  Nonclassical properties of states generated by the excitations on a coherent state. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[29]  E. Knill,et al.  Diluted maximum-likelihood algorithm for quantum tomography , 2006, quant-ph/0611244.

[30]  Julien Laurat,et al.  Remote creation of hybrid entanglement between particle-like and wave-like optical qubits , 2013, Nature Photonics.

[31]  Hyunseok Jeong,et al.  Using weak nonlinearity under decoherence for macroscopic entanglement generation and quantum computation , 2005, quant-ph/0507095.

[32]  G. Agarwal,et al.  Nonclassical properties of states generated by the excitations on a coherent state , 1991 .