Error analysis for denoising smooth modulo signals on a graph

[1]  P. Lauterbur,et al.  Image Formation by Induced Local Interactions: Examples Employing Nuclear Magnetic Resonance , 1973, Nature.

[2]  L. C. Graham,et al.  Synthetic interferometer radar for topographic mapping , 1974 .

[3]  D. Sorensen Newton's method with a model trust region modification , 1982 .

[4]  R. Goldstein,et al.  Topographic mapping from interferometric synthetic aperture radar observations , 1986 .

[5]  R. Pratt,et al.  The application of diffraction tomography to cross-hole seismic data , 1988 .

[6]  Claudio Prati,et al.  SAR Interferometry: A 2-D Phase Unwrapping Technique Based On Phase And Absolute Values Informations , 1990, 10th Annual International Symposium on Geoscience and Remote Sensing.

[7]  David P. Towers,et al.  Automatic interferogram analysis techniques applied to quasi-heterodyne holography and ESPI , 1991 .

[8]  Mark Hedley,et al.  A new two‐dimensional phase unwrapping algorithm for MRI images , 1992, Magnetic resonance in medicine.

[9]  Mitsuo Takeda,et al.  Phase unwrapping by a maximum cross‐amplitude spanning tree algorithm: a comparative study , 1996 .

[10]  Arkadi Nemirovski,et al.  Topics in Non-Parametric Statistics , 2000 .

[11]  William W. Hager,et al.  Minimizing a Quadratic Over a Sphere , 2001, SIAM J. Optim..

[12]  S. Chavez,et al.  Understanding phase maps in MRI: a new cutline phase unwrapping method , 2002, IEEE Transactions on Medical Imaging.

[13]  Youngjoong Joo,et al.  Wide dynamic range CMOS image sensor with pixel level ADC , 2003 .

[14]  Mikhail Belkin,et al.  Regularization and Semi-supervised Learning on Large Graphs , 2004, COLT.

[15]  Mariano Rivera,et al.  Half-quadratic cost functions for phase unwrapping. , 2004, Optics letters.

[16]  Willem H. Haemers,et al.  Spectra of Graphs , 2011 .

[17]  Y Liu,et al.  Path-independent phase unwrapping using phase gradient and total-variation (TV) denoising. , 2012, Optics express.

[18]  Pascal Frossard,et al.  The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains , 2012, IEEE Signal Processing Magazine.

[19]  S. Boucheron,et al.  Concentration inequalities : a non asymptotic theory of independence , 2013 .

[20]  Gábor Lugosi,et al.  Concentration Inequalities - A Nonasymptotic Theory of Independence , 2013, Concentration Inequalities.

[21]  Harry van Zanten,et al.  Estimating a smooth function on a large graph by Bayesian Laplacian regularisation , 2015 .

[22]  Yu-Xiang Wang,et al.  Total Variation Classes Beyond 1d: Minimax Rates, and the Limitations of Linear Smoothers , 2016, NIPS.

[23]  Takahiro Yamaguchi,et al.  Implantable self-reset CMOS image sensor and its application to hemodynamic response detection in living mouse brain , 2016 .

[24]  Akiko Takeda,et al.  Solving the Trust-Region Subproblem By a Generalized Eigenvalue Problem , 2017, SIAM J. Optim..

[25]  Ramesh Raskar,et al.  On unlimited sampling , 2017, 2017 International Conference on Sampling Theory and Applications (SampTA).

[26]  Anthony Man-Cho So,et al.  On the Estimation Performance and Convergence Rate of the Generalized Power Method for Phase Synchronization , 2016, SIAM J. Optim..

[27]  H. Zanten,et al.  Minimax lower bounds for function estimation on graphs , 2017, 1709.06360.

[28]  Chandra Sekhar Seelamantula,et al.  Wavelet-Based Reconstruction for Unlimited Sampling , 2018, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[29]  Norbert Goertz,et al.  Generalized Approximate Message Passing for Unlimited Sampling of Sparse Signals , 2018, 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP).

[30]  Ramesh Raskar,et al.  Unlimited Sampling of Sparse Signals , 2018, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[31]  Ramesh Raskar,et al.  Unlimited Sampling of Sparse Sinusoidal Mixtures , 2018, 2018 IEEE International Symposium on Information Theory (ISIT).

[32]  Hemant Tyagi,et al.  On denoising modulo 1 samples of a function , 2018, AISTATS.

[33]  Chinmay Hegde,et al.  Signal Reconstruction From Modulo Observations , 2018, 2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP).

[34]  Pierre C Bellec,et al.  Concentration of quadratic forms under a Bernstein moment assumption , 2019, 1901.08736.

[35]  Hemant Tyagi,et al.  Provably robust estimation of modulo 1 samples of a smooth function with applications to phase unwrapping , 2018, J. Mach. Learn. Res..

[36]  OUP accepted manuscript , 2021, Information and Inference: a journal of the IMA.