On the robust asymptotical stability of uncertain complex matrices over the complex unit circumference

This paper addresses the problem of establishing whether a complex matrix depending polynomially on a scalar parameter and its conjugate constrained over the complex unit circumference is robustly asymptotically stable in either the continuous-time case or the discrete-time case. A necessary and sufficient condition is proposed in terms of a linear matrix inequality (LMI) feasibility test based on complex Lyapunov functions depending polynomially on the uncertainty. Specifically, the condition is sufficient for any arbitrarily chosen degree of the Lyapunov function. Moreover, the condition is also necessary for a sufficiently large degree of the Lyapunov function, and an upper bound on the minimum degree required for achieving necessity is also provided. Some numerical examples illustrate the proposed results.

[1]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[2]  M. Sato,et al.  Robust Stability/Performance Analysis for Linear Time-Invariant Polytopically Parameter-Dependent Systems using Polynomially Parameter-Dependent Lyapunov Functions , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[3]  Graziano Chesi,et al.  LMI Techniques for Optimization Over Polynomials in Control: A Survey , 2010, IEEE Transactions on Automatic Control.

[4]  A.G. Aghdam,et al.  Robust Stability of LTI Systems Over Semialgebraic Sets Using Sum-of-Squares Matrix Polynomials , 2008, IEEE Transactions on Automatic Control.

[5]  R. Tempo,et al.  Randomized Algorithms for Analysis and Control of Uncertain Systems , 2004 .

[6]  Pierre-Alexandre Bliman,et al.  A Convex Approach to Robust Stability for Linear Systems with Uncertain Scalar Parameters , 2003, SIAM J. Control. Optim..

[7]  Carsten W. Scherer,et al.  Matrix Sum-of-Squares Relaxations for Robust Semi-Definite Programs , 2006, Math. Program..

[8]  Pedro Luis Dias Peres,et al.  An improved LMI condition for robust D-stability of uncertain polytopic systems , 2003, IEEE Trans. Autom. Control..

[9]  Dimitri Peaucelle,et al.  General polynomial parameter-dependent Lyapunov functions for polytopic uncertain systems , 2006 .

[10]  Tetsuya Iwasaki,et al.  Parameter-dependent Lyapunov function for exact stability analysis of single-parameter dependent LTI systems , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[11]  Ricardo H. C. Takahashi,et al.  New Approach to Robust$ cal D$-Stability Analysis of Linear Time-Invariant Systems With Polytope-Bounded Uncertainty , 2006, IEEE Transactions on Automatic Control.

[12]  Ricardo C. L. F. Oliveira,et al.  Parameter-Dependent LMIs in Robust Analysis: Characterization of Homogeneous Polynomially Parameter-Dependent Solutions Via LMI Relaxations , 2007, IEEE Transactions on Automatic Control.

[13]  D. Peaucelle,et al.  Robust Stability/Performance Analysis for Linear Time-Invariant Polynomially Parameter-Dependent Systems using Polynomially Parameter-Dependent Lyapunov Functions , 2007, Proceedings of the 45th IEEE Conference on Decision and Control.

[14]  Carsten W. Scherer,et al.  LMI Relaxations in Robust Control , 2006, Eur. J. Control.

[15]  B. Ross Barmish,et al.  New Tools for Robustness of Linear Systems , 1993 .

[16]  Graziano Chesi On the non-conservatism of a novel LMI relaxation for robust analysis of polytopic systems , 2008, Autom..

[17]  Graziano Chesi Instability Analysis of Uncertain Systems via Determinants and LMIs , 2015, IEEE Transactions on Automatic Control.

[18]  Graziano Chesi,et al.  Exact robust stability analysis of uncertain systems with a scalar parameter via LMIs , 2013, Autom..

[19]  J. Lasserre,et al.  On parameter-dependent Lyapunov functions for robust stability of linear systems , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[20]  M. Kojima Sums of Squares Relaxations of Polynomial Semidefinite Programs , 2003 .

[21]  A. Papachristodoulou,et al.  Nonlinear control synthesis by sum of squares optimization: a Lyapunov-based approach , 2004, 2004 5th Asian Control Conference (IEEE Cat. No.04EX904).

[22]  Graziano Chesi Establishing stability and instability of matrix hypercubes , 2005, Syst. Control. Lett..