Recursion relations in CFT and N=2 SYM theory

Based on prototypical example of Al. Zamolodchikov's recursion relations for the four point conformal block and using recently proposed Alday-Gaiotto-Tachikawa (AGT) conjecture, recursion relations are derived for the generalized prepotential of = 2 SYM with f = 0,1,2,3,4 (anti) fundamental or an adjoint hypermultiplets. In all cases the large expectation value limit is derived explicitly. A precise relationship between generic 1-point conformal block on torus and specific 4-point conformal block on sphere is established. In view of AGT conjecture this translates into a relation between partition functions with an adjoint and 4 fundamental hypermultiplets.

[1]  A. Mironov,et al.  On non-conformal limit of the AGT relations , 2009, 0909.2052.

[2]  AN ALGORITHM FOR THE MICROSCOPIC EVALUATION OF THE COEFFICIENTS OF THE SEIBERG–WITTEN PREPOTENTIAL , 2002, hep-th/0208176.

[3]  D. Gaiotto Asymptotically free = 2 theories and irregular conformal blocks , 2009, 0908.0307.

[4]  Nikita A. Nekrasov Seiberg-Witten prepotential from instanton counting , 2002 .

[5]  Andrei Okounkov,et al.  Seiberg-Witten theory and random partitions , 2003, hep-th/0306238.

[6]  A. Tanzini,et al.  = 1 superpotentials from multi-instanton calculus , 2005 .

[7]  E. Witten,et al.  Monopoles, duality and chiral symmetry breaking in N=2 supersymmetric QCD , 1994, hep-th/9408099.

[8]  L. Alday,et al.  Liouville Correlation Functions from Four-Dimensional Gauge Theories , 2009, 0906.3219.

[9]  A. Polyakov,et al.  Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory - Nucl. Phys. B241, 333 (1984) , 1984 .

[10]  Fumiyoshi Shoji,et al.  Monopole condensation and confinement , 1995 .

[11]  A. Zamolodchikov,et al.  Conformal bootstrap in Liouville field theory , 1995 .

[12]  A. Neveu,et al.  A differential equation for a four-point correlation function in Liouville field theory and elliptic four-point conformal blocks , 2009, 0902.1331.

[13]  A. Zamolodchikov Conformal symmetry in two-dimensional space: Recursion representation of conformal block , 1987 .

[14]  N. Seiberg,et al.  Electric - magnetic duality, monopole condensation, and confinement in N=2 supersymmetric Yang-Mills theory , 1994 .

[15]  J.F.Morales,et al.  N=1 Superpotentials from Multi-Instanton Calculus , 2005, hep-th/0510173.

[16]  A. Zamolodchikov Conformal symmetry in two dimensions: An explicit recurrence formula for the conformal partial wave amplitude , 1984 .

[17]  A. Morozov,et al.  Combinatorial expansions of conformal blocks , 2009, 0907.3946.