On the construction of multivariate distributions with given nonoverlapping multivariate marginals

A method to generate n-variate cumulative distribution functions with given ni-variate, i = 1, 2, ..., k (n = n1 + ... + nk) marginals is presented. The simplest nontrivial case applies to max-infinitely divisible marginals.

[1]  I. Olkin,et al.  Families of Multivariate Distributions , 1988 .

[2]  Leon Cohen,et al.  Probability distributions with given multivariate marginals , 1984 .

[3]  Harry Joe,et al.  Families of min-stable multivariate exponential and multivariate extreme value distributions , 1990 .

[4]  Carles M. Cuadras,et al.  A continuous general multivariate distribution and its properties , 1981 .

[5]  A. Sampson,et al.  Uniform representations of bivariate distributions , 1975 .

[6]  M. J. Frank On the simultaneous associativity ofF(x,y) andx +y -F(x,y) , 1979 .

[7]  L. Rüschendorf FréChet-Bounds and Their Applications , 1991 .

[8]  Stamatis Cambanis Some properties and generalizations of multivariate Eyraud-Gumbel-Morgenstern distributions , 1977 .

[9]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[10]  Christian Genest,et al.  Copules archimédiennes et families de lois bidimensionnelles dont les marges sont données , 1986 .

[11]  R. Plackett A Class of Bivariate Distributions , 1965 .

[12]  Norman L. Johnson,et al.  On some generalized farlie-gumbel-morgenstern distributions , 1975 .

[13]  M. J. Frank On the simultaneous associativity of F(x, y) and x+y-F(x, y). (Short Communication). , 1978 .

[14]  D. Clayton A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence , 1978 .

[15]  N. L. Johnson,et al.  On some generalized farlie-gumbel-morgenstern distributions-II regression, correlation and further generalizations , 1977 .

[16]  Allan R. Sampson,et al.  Uniform Representation of Bivariate Distributions. , 1974 .