Flexible dual-beam geometry for advanced optical micromanipulation experiments

We present a novel method for optical manipulation of microobjects and nanoobjects employing adaptive optical element to control properties of two counter-propagating beams overlapping in a sample chamber. We show that using this system one can eliminate optical aberrations in both pathways, online realign the system remotely from a computer interface, arbitrarily switch in real time between various beams types (i.e. Gaussian, Bessel, vortex) and their spatial intensity distributions (beam width, vorticity). We demonstrate optical manipulation of both high- and low-index particles in water or air, particle delivery in an optical conveyor belt using stationary mechanical components, formation of colloidal solitons, visualization of fluid flow in microcapillary as well as the rotation and reorientation of a trapped cell.

[1]  Christian Dietrich,et al.  The optical cell rotator. , 2008, Optics express.

[2]  W Sibbett,et al.  Generation of multiple Bessel beams for a biophotonics workstation. , 2008, Optics express.

[3]  M. Šiler,et al.  Optical forces generated by evanescent standing waves and their usage for sub-micron particle delivery , 2006 .

[4]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .

[5]  Pavel Zemánek,et al.  Colloquium: Gripped by light: Optical binding , 2010 .

[6]  P. Zemánek,et al.  Long-range one-dimensional longitudinal optical binding. , 2008, Physical review letters.

[7]  G. Spalding,et al.  Computer-generated holographic optical tweezer arrays , 2000, cond-mat/0008414.

[8]  Balpreet Singh Ahluwalia,et al.  Generation of self-imaged optical bottle beams , 2004 .

[9]  Kishan Dholakia,et al.  Three-dimensional arrays of optical bottle beams , 2003 .

[10]  W Sibbett,et al.  Trapping and manipulation of low-index particles in a two-dimensional interferometric optical trap. , 2001, Optics letters.

[11]  Stephen R Quake,et al.  Anomalous vibrational dispersion in holographically trapped colloidal arrays. , 2006, Physical review letters.

[12]  Wieslaw Krolikowski,et al.  Optical guiding of absorbing nanoclusters in air. , 2009, Optics express.

[13]  Christelle Monat,et al.  Integrated optofluidics: A new river of light , 2007 .

[14]  K. Volke-Sepulveda,et al.  All-optical 3D atomic loops generated with Bessel light fields , 2008, 0812.0090.

[15]  David G. Grier,et al.  Evolution of a colloidal critical state in an optical pinning potential landscape , 2002 .

[16]  K. Dholakia,et al.  In situ wavefront correction and its application to micromanipulation , 2010 .

[17]  M. Šiler,et al.  An optical nanotrap array movable over a milimetre range , 2006 .

[18]  Wolfgang Singer,et al.  Self-organized array of regularly spaced microbeads in a fiber-optical trap , 2003 .

[19]  P. Zemánek,et al.  Optical trapping of nanoparticles and microparticles by a Gaussian standing wave. , 1999, Optics letters.

[20]  Michael W. Berns,et al.  Interferometric optical tweezers , 1997 .

[21]  K. Dholakia,et al.  Bessel beams: Diffraction in a new light , 2005 .

[22]  Jennifer E. Curtis,et al.  Dynamic holographic optical tweezers , 2002 .

[23]  N. K. Metzger,et al.  Observation of bistability and hysteresis in optical binding of two dielectric spheres. , 2006, Physical review letters.

[24]  Tomáš Čižmár,et al.  A dual beam photonic crystal fiber trap for microscopic particles , 2008 .

[25]  Pavel Zemánek,et al.  Light at work: The use of optical forces for particle manipulation, sorting, and analysis , 2008, Electrophoresis.

[26]  Pavel Zemánek,et al.  Two- and three-beam interferometric optical tweezers , 2005 .

[27]  Pavel Zemánek,et al.  Theoretical comparison of optical traps created by standing wave and single beam , 2003 .

[28]  Tomáš Čižmár,et al.  Optical conveyor belt for delivery of submicron objects , 2005 .

[29]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[30]  Monika Ritsch-Marte,et al.  Optical mirror trap with a large field of view. , 2009, Optics express.

[31]  Jesper Glückstad,et al.  Multiple-beam optical tweezers generated by the generalized phase-contrast method. , 2002, Optics letters.

[32]  Johannes Courtial,et al.  3D interferometric optical tweezers using a single spatial light modulator. , 2005, Optics express.

[33]  M Mazilu,et al.  Dual beam fibre trap for Raman micro-spectroscopy of single cells. , 2006, Optics express.

[34]  Grover A. Swartzlander,et al.  Trapping of low-index microparticles in an optical vortex , 1998 .

[35]  K Dholakia,et al.  Experimental observation of modulation instability and optical spatial soliton arrays in soft condensed matter. , 2007, Physical review letters.

[36]  Yael Roichman,et al.  Holographic optical trapping. , 2006, Applied optics.

[37]  Pavel Zemánek,et al.  Optical trapping of Rayleigh particles using a Gaussian standing wave , 1998 .

[38]  K. Neuman,et al.  Optical trapping. , 2004, The Review of scientific instruments.

[39]  Miles J. Padgett,et al.  Optical tweezers and optical spanners with Laguerre-Gaussian modes , 1996 .

[40]  Karen Volke-Sepúlveda,et al.  Wave fields with a periodic orbital angular momentum gradient along a single axis: a chain of vortices , 2009 .

[41]  Pavel Zemánek,et al.  Simplified description of optical forces acting on a nanoparticle in the Gaussian standing wave. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[42]  J. Käs,et al.  The optical stretcher: a novel laser tool to micromanipulate cells. , 2001, Biophysical journal.

[43]  Tomáš Čižmár,et al.  Sub-micron particle organization by self-imaging of non-diffracting beams , 2006 .

[44]  David McGloin,et al.  Vortex-trap-induced fusion of femtoliter-volume aqueous droplets. , 2007, Analytical chemistry.

[45]  David G. Grier,et al.  Optical Peristalsis , 2003 .

[46]  Tomáš Čižmár,et al.  Surface delivery of a single nanoparticle under moving evanescent standing-wave illumination , 2008 .

[47]  E. Wright,et al.  Nonlinear optical response of colloidal suspensions. , 2009, Optics express.

[48]  Pavel Zemánek,et al.  Cellular and colloidal separation using optical forces. , 2007, Methods in cell biology.

[49]  David L. Andrews,et al.  Structured Light and Its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces , 2008 .