Violation of contextual generalization of the Leggett–Garg inequality for recognition of ambiguous figures

We interpret the Leggett-Garg (LG) inequality as a kind of contextual probabilistic inequality in which one combines data collected in experiments performed for three different contexts. In the original version of the inequality these contexts have the temporal nature and they are given by three pairs of instances of time, $(t_1, t_2), (t_2, t_3), (t_3, t_4),$ where $t_1 < t_2 < t_3.$ We generalize LG conditions of macroscopic realism and noninvasive measurability in the general contextual framework. Our formulation is done in the purely probabilistic terms: existence of the context independent joint probability distribution $P$ and the possibility to reconstruct the experimentally found marginal (two dimensional) probability distributions from the $P.$ We derive an analog of the LG inequality, "contextual LG inequality", and use it as a test of "quantum-likeness" of statistical data collected in a series of experiments on recognition of ambiguous figures. In our experimental study the figure under recognition is the Schroeder stair which is shown with rotations for different angles. Contexts are encoded by dynamics of rotations: clockwise, anticlockwise, and random. Our data demonstrated violation of the contextual LG inequality for some combinations of aforementioned contexts. Since in quantum theory and experiments with quantum physical systems this inequality is violated, e.g., in the form of the original LG-inequality, our result can be interpreted as a sign that the quantum(-like) models can provide a more adequate description of the data generated in the process of recognition of ambiguous figures.

[1]  Andrei Khrennikov,et al.  On the equivalence of the Clauser–Horne and Eberhard inequality based tests , 2014, 1403.2811.

[2]  L. Accardi Topics in quantum probability , 1981 .

[3]  E. Dzhafarov Selective influence through conditional independence , 2003 .

[4]  Harald Atmanspacher,et al.  Quantum Zeno features of bistable perception , 2003, Biological Cybernetics.

[5]  Guillaume Adenier,et al.  Is the fair sampling assumption supported by EPR experiments , 2007 .

[6]  Elio Conte,et al.  A Preliminar Evidence of Quantum Like Behavior in Measurements of Mental States , 2003 .

[7]  Ehtibar N. Dzhafarov,et al.  No-Forcing and No-Matching Theorems for Classical Probability Applied to Quantum Mechanics , 2014 .

[8]  N. N. Vorob’ev Consistent Families of Measures and Their Extensions , 1962 .

[9]  Andrei Khrennikov,et al.  Ubiquitous Quantum Structure , 2010 .

[10]  T. Nieuwenhuizen,et al.  Is the Contextuality Loophole Fatal for the Derivation of Bell Inequalities? , 2011 .

[11]  A. Kolmogoroff Grundbegriffe der Wahrscheinlichkeitsrechnung , 1933 .

[12]  M. Kupczyński,et al.  Pitovsky model and complementarity , 1987 .

[13]  Andrei Khrennikov,et al.  Violation of Bell's inequality and postulate on simultaneous measurement of compatible observables , 2011, 1102.4743.

[14]  Ehtibar N. Dzhafarov,et al.  On Selective Influences, Marginal Selectivity, and Bell/CHSH Inequalities , 2012, Top. Cogn. Sci..

[15]  A. Fine Correlations and efficiency: Testing the Bell inequalities , 1989 .

[16]  J. Bell,et al.  Speakable and Unspeakable in Quatum Mechanics , 1988 .

[17]  Janne Kujala,et al.  Probability, Random Variables, and Selectivity , 2013, 1312.2239.

[18]  Masanori Ohya,et al.  Non-Kolmogorovian Approach to the Context-Dependent Systems Breaking the Classical Probability Law , 2013 .

[19]  Masanori Ohya,et al.  Quantum-Like Model for Decision Making Process in Two Players Game , 2011 .

[20]  M. Ohya,et al.  Mathematical Foundations of Quantum Information and Computation and Its Applications to Nano- and Bio-systems , 2011 .

[21]  T. Nieuwenhuizen,et al.  Where Bell went wrong , 2008, 0812.3058.

[22]  Andrei Khrennikov,et al.  Bell argument: Locality or realism? Time to make the choice , 2011, 1108.0001.

[23]  Yoshiharu Tanaka,et al.  Quantum-like model of glucose effect on Escherichia coli growth , 2012 .

[24]  F. Jin,et al.  Event-by-event simulation of nonclassical effects in two-photon interference experiments , 2012, 1208.2368.

[25]  Ehtibar N. Dzhafarov,et al.  Embedding Quantum into Classical: Contextualization vs Conditionalization , 2013, PloS one.

[26]  Ehtibar N. Dzhafarov,et al.  Quantum Entanglement and the Issue of Selective Influences in Psychology: An Overview , 2012, QI.

[27]  Jerome R. Busemeyer,et al.  Quantum Models of Cognition and Decision: Frontmatter , 2012 .

[28]  H. Schröder,et al.  Ueber eine optische Inversion bei Betrachtung verkehrter, durch optische Vorrichtung entworfener, physischer Bilder , 1858 .

[29]  M P Almeida,et al.  Violation of the Leggett–Garg inequality with weak measurements of photons , 2009, Proceedings of the National Academy of Sciences.

[30]  Ehtibar N. Dzhafarov,et al.  A Qualified Kolmogorovian Account of Probabilistic Contextuality , 2013, QI.

[31]  Masanori Ohya,et al.  Adaptive Dynamics and Optical Illusion on Schröder's Stair , 2013, QI.

[32]  Yoshiharu Tanaka,et al.  Quantum-like dynamics of decision-making , 2012 .

[33]  Masanori Ohya,et al.  Quantum-like dynamics of decision-making in prisoner's dilemma game , 2012 .

[34]  Andrei Khrennikov,et al.  Ubiquitous Quantum Structure: From Psychology to Finance , 2010 .

[35]  Andrei Khrennikov,et al.  Mental States Follow Quantum Mechanics During Perception and Cognition of Ambiguous Figures , 2009, Open Syst. Inf. Dyn..

[36]  Elio Conte,et al.  Testing Quantum Consciousness , 2008 .

[37]  M. E. Goggina,et al.  Violation of the Leggett – Garg inequality with weak measurements of photons , 2011 .

[38]  Joseph P. Zbilut,et al.  A Preliminary Experimental Verification On the Possibility of Bell Inequality Violation in Mental States , 2008 .

[39]  Andrei Khrennikov,et al.  Bell-Boole Inequality: Nonlocality or Probabilistic Incompatibility of Random Variables? , 2008, Entropy.

[40]  Jerome R. Busemeyer,et al.  Quantum Models of Cognition and Decision , 2012 .

[41]  Andrei Khrennikov,et al.  Contextual Approach to Quantum Formalism , 2009 .

[42]  Harald Atmanspacher,et al.  Weak Quantum Theory: Formal Framework and Selected Applications , 2006 .

[43]  H. L. Rietz Review: A. Kolmogoroff, Grundbegriffe der Wahrscheinlichkeitsrechnung , 1934 .

[44]  Yoshiharu Tanaka,et al.  Quantum Adaptivity in Biology: From Genetics to Cognition , 2015, Springer Netherlands.

[45]  Garg,et al.  Quantum mechanics versus macroscopic realism: Is the flux there when nobody looks? , 1985, Physical review letters.

[46]  Karl Hess,et al.  Bell’s theorem: Critique of proofs with and without inequalities , 2005 .

[47]  J. Acacio de Barros,et al.  Joint probabilities and quantum cognition , 2012, 1206.6706.

[48]  A. Zeilinger,et al.  Speakable and Unspeakable in Quantum Mechanics , 1989 .

[49]  Harald Atmanspacher,et al.  Temporal nonlocality in bistable perception , 2012 .

[50]  Yoshiharu Tanaka,et al.  Quantum-like model of brain's functioning: decision making from decoherence. , 2011, Journal of theoretical biology.

[51]  Joseph P. Zbilut,et al.  Some remarks on an experiment suggesting quantum-like behavior of cognitive entities and formulation of an abstract quantum mechanical formalism to describe cognitive entity and its dynamics , 2007 .

[52]  Yoshiharu Tanaka,et al.  Quantum-like model of diauxie in Escherichia coli: operational description of precultivation effect. , 2012, Journal of theoretical biology.

[53]  A. Cabello,et al.  Experimental test of quantum contextuality in neutron interferometry. , 2009, Physical review letters.

[54]  N. David Mermin,et al.  Boojums All The Way Through , 1990 .

[55]  Andrei Khrennikov,et al.  Single, Complete, Probability Spaces Consistent With EPR‐Bohm‐Bell Experimental Data , 2009 .

[56]  Andrei Khrennikov,et al.  Classical probability model for Bell inequality , 2014, 1404.7038.