Fluid-object interactions in interior ballistics

Abstract A fluid–object interaction model for an interior ballistics problem is presented. The fluid is a compressible gas and is modeled using the Deformable-Spatial-Domain/Stabilized-Space-Time (DSD/SST) formulation. The objects can move axially within the model domain, and their motion is determined by the fluid pressure forces and collisions with other objects and rigid boundaries. The model is implemented assuming axisymmetry of the geometry and the flow field. The fluid mesh is composed of structured regions of quadrilateral elements and unstructured regions of triangular elements. The structured elements are used near the surface of the objects in order to better resolve the boundary layer, while the unstructured elements are used elsewhere in the domain. As the objects move, the mesh deformation needed to accommodate these motions takes place only in the unstructured parts of the mesh. Application to an interior ballistics problem is presented and discussed.