Interfacial chemical bond regulating the electronic coupling of ZnIn2S4-x-WO3-x for enhancing the photocatalytic pollutions degradation coupled with hydrogen evolution

[1]  T. Ahamad,et al.  Rationally constructed synergy between dual-vacancies and Z-scheme heterostructured MoS2-x/g-C3N4/Ca-α-Fe2O3 for high-performance photodegradation of sulfamethoxazole antibiotic from aqueous solution , 2023, Chemical Engineering Journal.

[2]  Yi‐Jun Xu,et al.  Exposed Zinc Sites on Hybrid ZnIn2S4@CdS Nanocages for Efficient Regioselective Photocatalytic Epoxide Alcoholysis. , 2023, Angewandte Chemie.

[3]  Haibo Jin,et al.  Interfacial Chemical Bond Engineering in a Direct Z-Scheme g-C3N4/MoS2 Heterojunction. , 2023, ACS applied materials & interfaces.

[4]  Shuangpeng Wang,et al.  In-situ/operando Raman techniques for in-depth understanding on electrocatalysis , 2023, Chemical Engineering Journal.

[5]  Sijia Liu,et al.  3-D nitrogen-doped carbon cage encapsulated ultrasmall MoC nanoparticles for promoting simultaneous ZnIn2S4 photocatalytic hydrogen generation and organic wastewater degradation. , 2022, Journal of colloid and interface science.

[6]  Z. Wang,et al.  Enhanced Photocatalytic Benzene Oxidation to Phenol over Monoclinic WO3 Nanorods under Visible Light , 2022, ACS Catalysis.

[7]  Baile Xu,et al.  Constructing Z-scheme 1D/2D heterojunction of ZnIn2S4 nanosheets decorated WO3 nanorods to enhance Cr(VI) photocatalytic reduction and rhodamine B degradation. , 2022, Chemosphere.

[8]  Jiaguo Yu,et al.  A Twin S‐Scheme Artificial Photosynthetic System with Self‐Assembled Heterojunctions Yields Superior Photocatalytic Hydrogen Evolution Rate , 2022, Advanced materials.

[9]  Lirong Fu,et al.  ZnIn2S4-based photocatalysts for photocatalytic hydrogen evolution via water splitting , 2022, Coordination Chemistry Reviews.

[10]  Y. Zhang,et al.  Chemical Bonding Interface in Bi2Sn2O7/BiOBr S-Scheme Heterojunction Triggering Efficient N2 Photofixation , 2022, Applied Catalysis B: Environmental.

[11]  Qinfang Zhang,et al.  Recent advances in designing ZnIn2S4-based heterostructured photocatalysts for hydrogen evolution , 2022, Journal of Materials Science & Technology.

[12]  M. Zolfigol,et al.  A MOF-on-MOF strategy to construct double Z-scheme heterojunction for high-performance photocatalytic degradation , 2022, Applied Catalysis B: Environmental.

[13]  Jiaguo Yu,et al.  A Bifunctional CdS/MoO2/MoS2 Catalyst Enhances Photocatalytic H2 Evolution and Pyruvic Acid Synthesis. , 2022, Angewandte Chemie.

[14]  G. Pan,et al.  Construction dual vacancies to regulate the energy band structure of ZnIn2S4 for enhanced visible light-driven photodegradation of 4-NP. , 2022, Journal of hazardous materials.

[15]  S. Yin,et al.  Oxygen Vacancy and Van Der Waals Heterojunction Modulated Interfacial Chemical Bond Over Mo2c/Bi4o5br2 for Boosting Photocatalytic Co2 Reduction , 2022, SSRN Electronic Journal.

[16]  Binghao Wang,et al.  Rich oxygen vacancies facilitated photocatalytic performance of BiOBr induced by carbon black , 2022, Solid State Sciences.

[17]  Lingyan Duan,et al.  Understanding Dual-vacancy Heterojunction for Boosting Photocatalytic CO2 Reduction With Highly Selective Conversion to CH4 , 2022, Applied Catalysis B: Environmental.

[18]  Ming‐Chung Wu,et al.  Spatial Separation of Cocatalysts on Z‐Scheme Organic/Inorganic Heterostructure Hollow Spheres for Enhanced Photocatalytic H2 Evolution and In‐Depth Analysis of the Charge‐Transfer Mechanism , 2022, Advanced materials.

[19]  Jianhao Qiu,et al.  Cr-metal-organic framework coordination with ZnIn2S4 nanosheets for photocatalytic reduction of Cr(VI) , 2022, Journal of Cleaner Production.

[20]  Zhipeng Huang,et al.  Synthesis of hierarchical tandem double Z-scheme heterojunctions for robust photocatalytic H2 generation , 2022, Chemical Engineering Journal.

[21]  Dekun Ma,et al.  Constructing hierarchical ZnIn2S4/g-C3N4 S-scheme heterojunction for boosted CO2 photoreduction performance , 2022, Chemical Engineering Journal.

[22]  Yongfa Zhu,et al.  High Photocatalytic Oxygen Evolution via Strong Built‐In Electric Field Induced by High Crystallinity of Perylene Imide Supramolecule , 2022, Advanced materials.

[23]  Eui-Tae Kim,et al.  Facile synthesis and efficient photoelectrochemical reaction of WO3/WS2 core@shell nanorods utilizing WO3∙0.33H2O phase , 2021 .

[24]  Yanjing Su,et al.  Boosting Photocatalytic Hydrogen Production via Interfacial Engineering on 2D Ultrathin Z‐Scheme ZnIn2S4/g‐C3N4 Heterojunction , 2021, Advanced Functional Materials.

[25]  W. Dong,et al.  Boosting Photocatalytic Hydrogen Evolution: Orbital Redistribution of Ultrathin ZnIn2S4 Nanosheets Via Atomic Defects , 2021, Applied Catalysis B: Environmental.

[26]  Jiaguo Yu,et al.  Optimizing Atomic Hydrogen Desorption of Sulfur‐Rich NiS1+x Cocatalyst for Boosting Photocatalytic H2 Evolution , 2021, Advanced materials.

[27]  Hongbing Ji,et al.  Sulfur Vacancy and Ti3C2T x Cocatalyst Synergistically Boosting Interfacial Charge Transfer in 2D/2D Ti3C2T x /ZnIn2S4 Heterostructure for Enhanced Photocatalytic Hydrogen Evolution , 2021, Advanced science.

[28]  N. Wells,et al.  Nanoconfinement-Induced Conversion of Water Chemical Adsorption Properties in Nanoporous Photocatalysts to Improve Photocatalytic Hydrogen Evolution , 2021, ACS Catalysis.

[29]  B. Al-Mur,et al.  Sustainable visible light photocatalytic scavenging of the noxious organic pollutant using recyclable and reusable polyaniline coupled WO3/WS2 nanohybrid , 2021, Journal of Cleaner Production.

[30]  S. Y. Kim,et al.  WS2–WC–WO3 nano-hollow spheres as an efficient and durable catalyst for hydrogen evolution reaction , 2021, Nano Convergence.

[31]  J. Mao,et al.  Sulfur-induced abundant oxygen vacancies in hollow silica microsphere toward super anode , 2021 .

[32]  A. Ismail,et al.  Review on tungsten trioxide as a photocatalysts for degradation of recalcitrant pollutants , 2021 .

[33]  K. Lv,et al.  Embedding CdS@Au into Ultrathin Ti3–xC2Ty to Build Dual Schottky Barriers for Photocatalytic H2 Production , 2021, ACS Catalysis.

[34]  J. Corriou,et al.  Different photocatalytic levels of organics in papermaking wastewater by flocculation-photocatalysis and SBR-photocatalysis: Degradation and GC–MS experiments, adsorption and photocatalysis simulations , 2021 .

[35]  Gengfeng Zheng,et al.  Double sulfur vacancies by lithium tuning enhance CO2 electroreduction to n-propanol , 2021, Nature Communications.

[36]  Dehui Deng,et al.  Sulfur vacancy-rich MoS2 as a catalyst for the hydrogenation of CO2 to methanol , 2021, Nature Catalysis.

[37]  Jianfeng Huang,et al.  Interfacial chemical bond and internal electric field modulated Z-scheme Sv-ZnIn2S4/MoSe2 photocatalyst for efficient hydrogen evolution , 2021, Nature Communications.

[38]  Jianfeng Zhao,et al.  Steering electron-hole migration pathways using oxygen vacancies in tungsten oxides to enhance their photocatalytic oxygen evolution performance. , 2021, Angewandte Chemie.

[39]  Shen-ming Chen,et al.  0D/2D CeO2/ZnIn2S4 Z-scheme heterojunction for visible-light-driven photocatalytic H2 evolution , 2020 .

[40]  C. Shu,et al.  Tuning the electronic band structure of Mott–Schottky heterojunctions modified with surface sulfur vacancy achieves an oxygen electrode with high catalytic activity for lithium–oxygen batteries , 2020 .

[41]  G. He,et al.  Co3O4 nanosheets preferentially growing (2 2 0) facet with a large amount of surface chemisorbed oxygen for efficient oxidation of elemental mercury from flue gas. , 2020, Environmental science & technology.

[42]  B. Rezaei,et al.  Ultrasensitive voltammetric and impedimetric aptasensor for diazinon pesticide detection by VS2 quantum dots-graphene nanoplatelets/carboxylated multiwalled carbon nanotubes as a new group nanocomposite for signal enrichment. , 2020, Analytica chimica acta.

[43]  L. Wang,et al.  Oxygen vacancy regulated TiNb2O7 compound with enhanced electrochemical performance used as anode material in Li-ion batteries , 2020 .

[44]  T. Xie,et al.  Rational design of Z-scheme PtS-ZnIn2S4/WO3-MnO2 for overall photo-catalytic water splitting under visible light , 2019 .

[45]  Ting Zhu,et al.  Fe-Doped BiOCl Nanosheets with Light-Switchable Oxygen Vacancies for Photocatalytic Nitrogen Fixation , 2019 .

[46]  Peifang Wang,et al.  All-solid-state Z-scheme WO3 nanorod/ZnIn2S4 composite photocatalysts for the effective degradation of nitenpyram under visible light irradiation. , 2019, Journal of hazardous materials.

[47]  X. Lou,et al.  Supporting Ultrathin ZnIn2S4 Nanosheets on Co/N‐Doped Graphitic Carbon Nanocages for Efficient Photocatalytic H2 Generation , 2019, Advanced materials.

[48]  B. Yan,et al.  Half-unit-cell ZnIn2S4 monolayer with sulfur vacancies for photocatalytic hydrogen evolution , 2019, Applied Catalysis B: Environmental.

[49]  Licheng Sun,et al.  Two-dimensional Janus heterostructures for superior Z-scheme photocatalytic water splitting , 2019, Nano Energy.

[50]  K. Balasubramanian,et al.  Charge transfer induced tunable bandgap and enhanced saturable absorption behavior in rGO/WO3 composites , 2018, Applied Physics A.

[51]  X. Lou,et al.  Construction of ZnIn2S4-In2O3 Hierarchical Tubular Heterostructures for Efficient CO2 Photoreduction. , 2018, Journal of the American Chemical Society.

[52]  Zhanhu Guo,et al.  Role of Interfaces in Two-Dimensional Photocatalyst for Water Splitting , 2018 .

[53]  F. Tao,et al.  Consciously Constructing Heterojunction or Direct Z-Scheme Photocatalysts by Regulating Electron Flow Direction , 2018 .

[54]  He Zhang,et al.  Efficient NH3-SCR removal of NOx with highly ordered mesoporous WO3(χ)-CeO2 at low temperatures. , 2017, Applied catalysis. B, Environmental.

[55]  Matthew T. Darby,et al.  MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction. , 2017, Nature chemistry.

[56]  C. Su,et al.  Fabrication of direct Z-scheme Ta3N5-WO2.72 film heterojunction photocatalyst for enhanced hydrogen evolution , 2017 .

[57]  J. Grossman,et al.  High Surface Reactivity and Water Adsorption on NiFe2O4 (111) Surfaces , 2013 .

[58]  S. Carabineiro,et al.  A novel S-scheme 3D ZnIn2S4/WO3 heterostructure for improved hydrogen production under visible light irradiation , 2022, Chinese Journal of Catalysis.

[59]  Haiqun Chen,et al.  Oxygen and sulfur dual vacancies engineering on 3D Co3O4/Co3S4 heterostructure to improve overall water splitting activity , 2022, Green Chemistry.