One example on how colloidal nano- and microparticles could contribute to medicine.

Nanomedicine, nowadays, is a popular keyword in the media, although everyone seems to associate it with different visions, hopes and even fears. This article gives a perspective from two sides. From the point of view of a materials scientist, it will be pointed out what new materials will be possible, how they will be designed and which properties they could offer for diagnosis and treatment. From the point of view of a medical doctor, it will be pointed out which properties are actually desired and what materials are hoped for practical applications. The two different points of view indicate that, although sophisticated materials with advanced novel properties will be available in the future, they do not automatically match the requirements and demands of clinicians. The discussion is centerd around one example, multifunctional polyelectrolyte capsules, which might act as a 'nanosubmarine' for in vivo sensing and delivery, which is used to highlight promising interfaces between both disciplines.

[1]  R. Weiss,et al.  Top-Down Versus Bottom-Up , 2010, Science.

[2]  W. Parak,et al.  Intracellular processing of proteins mediated by biodegradable polyelectrolyte capsules. , 2009, Nano letters.

[3]  M. Morales,et al.  Relaxation times of colloidal iron platinum in polymer matrixes , 2009 .

[4]  S. Cerdán,et al.  Paramagnetic Gd-based gold glyconanoparticles as probes for MRI: tuning relaxivities with sugars. , 2009, Chemical communications.

[5]  H. Ditzel,et al.  Efficient isolation and quantitative proteomic analysis of cancer cell plasma membrane proteins for identification of metastasis-associated cell surface markers. , 2009, Journal of proteome research.

[6]  Walter H. Chang,et al.  Tracking of cellular uptake of hydrophilic CdSe/ZnS quantum dots/hydroxyapatite composites nanoparticles in MC3T3-E1 osteoblast cells. , 2009, Journal of nanoscience and nanotechnology.

[7]  Wolfgang J. Parak,et al.  Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications. , 2009, ACS nano.

[8]  W. Hennink,et al.  Polyelectrolyte microcapsules for biomedical applications , 2009 .

[9]  W. Parak,et al.  Composite nanoparticles take aim at cancer. , 2008, ACS nano.

[10]  Wolfgang J. Parak,et al.  Uptake of Colloidal Polyelectrolyte‐Coated Particles and Polyelectrolyte Multilayer Capsules by Living Cells , 2008 .

[11]  F. Caruso,et al.  Low-fouling, biofunctionalized, and biodegradable click capsules. , 2008, Biomacromolecules.

[12]  Gerd Ritter,et al.  PEGylated gold nanoparticles conjugated to monoclonal F19 antibodies as targeted labeling agents for human pancreatic carcinoma tissue. , 2008, ACS nano.

[13]  G. Sukhorukov,et al.  Photoactivated release of cargo from the cavity of polyelectrolyte capsules to the cytosol of cells. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[14]  Edward Chu,et al.  A history of cancer chemotherapy. , 2008, Cancer research.

[15]  J. Käs,et al.  A novel flow-cytometry-based assay for cellular uptake studies of polyelectrolyte microcapsules. , 2008, Small.

[16]  Betty Y. S. Kim,et al.  Biodegradable quantum dot nanocomposites enable live cell labeling and imaging of cytoplasmic targets. , 2008, Nano letters.

[17]  I. Weinstein,et al.  The history of Cancer Research: introducing an AACR Centennial series. , 2008, Cancer research.

[18]  Robert Langer,et al.  Self-assembled lipid--polymer hybrid nanoparticles: a robust drug delivery platform. , 2008, ACS nano.

[19]  C. Biskup,et al.  Development and critical evaluation of fluorescent chloride nanosensors. , 2008, Analytical chemistry.

[20]  T. Pellegrino,et al.  Multifunctional nanostructures based on inorganic nanoparticles and oligothiophenes and their exploitation for cellular studies. , 2008, Journal of the American Chemical Society.

[21]  E. Purcell Life at Low Reynolds Number , 2008 .

[22]  C. Sangregorio,et al.  Magnetic properties of novel superparamagnetic MRI contrast agents based on colloidal nanocrystals , 2008 .

[23]  W. Parak,et al.  Nanoparticle-modified polyelectrolyte capsules , 2008 .

[24]  N. Fettig,et al.  Synthesis, in vitro and in vivo evaluation of radiolabeled nanoparticles. , 2008, The quarterly journal of nuclear medicine and molecular imaging : official publication of the Italian Association of Nuclear Medicine (AIMN) [and] the International Association of Radiopharmacology (IAR), [and] Section of the Society of....

[25]  Monty Liong,et al.  Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. , 2008, ACS nano.

[26]  W. Bodmer,et al.  Targeted killing of colorectal cancer cell lines by a humanised IgG1 monoclonal antibody that binds to membrane-bound carcinoembryonic antigen , 2008, British Journal of Cancer.

[27]  S. Nie,et al.  Therapeutic Nanoparticles for Drug Delivery in Cancer , 2008, Clinical Cancer Research.

[28]  G. Sukhorukov,et al.  Nanorods as Wavelength‐Selective Absorption Centers in the Visible and Near‐Infrared Regions of the Electromagnetic Spectrum , 2008 .

[29]  H. Gaub,et al.  Single-Molecule Cut-and-Paste Surface Assembly , 2008, Science.

[30]  R. Schwartz,et al.  Molecular origins of cancer. , 2008, The New England journal of medicine.

[31]  N. N. Sharma,et al.  Nanorobot Movement: Challenges and Biologically inspired solutions , 2008 .

[32]  Wim E. Hennink,et al.  In vivo Cellular Uptake, Degradation, and Biocompatibility of Polyelectrolyte Microcapsules† , 2007 .

[33]  G. Sukhorukov,et al.  Polymer microcapsules as mobile local pH-sensors , 2007 .

[34]  Wolfgang J Parak,et al.  Multifunctionalized polymer microcapsules: novel tools for biological and pharmacological applications. , 2007, Small.

[35]  Shashi K Murthy,et al.  Nanoparticles in modern medicine: State of the art and future challenges , 2007, International journal of nanomedicine.

[36]  E. Donath,et al.  Flow cytometry of HEK 293T cells interacting with polyelectrolyte multilayer capsules containing fluorescein-labeled poly(acrylic acid) as a pH sensor. , 2007, Biomacromolecules.

[37]  D. Schüler,et al.  Comparative Genome Analysis of Four Magnetotactic Bacteria Reveals a Complex Set of Group-Specific Genes Implicated in Magnetosome Biomineralization and Function , 2007, Journal of bacteriology.

[38]  Hui Zhang,et al.  Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. , 2007, Nano letters.

[39]  R. Schiffelers,et al.  Fusogenic peptides enhance endosomal escape improving siRNA-induced silencing of oncogenes. , 2007, International journal of pharmaceutics.

[40]  Dar-Bin Shieh,et al.  Nanoshell Magnetic Resonance Imaging Contrast Agents , 2007, 2007 Digest of papers Microprocesses and Nanotechnology.

[41]  B. Walker,et al.  Nanotechnology and nanomedicine: a primer. , 2006, Journal of the National Medical Association.

[42]  M. Noble,et al.  Cancer stem cells. , 2006, The New England journal of medicine.

[43]  F. Caruso,et al.  Targeting and Uptake of Multilayered Particles to Colorectal Cancer Cells , 2006 .

[44]  Wolfgang J Parak,et al.  Laser-induced release of encapsulated materials inside living cells. , 2006, Angewandte Chemie.

[45]  Gleb B. Sukhorukov,et al.  Intracellularly Degradable Polyelectrolyte Microcapsules , 2006 .

[46]  Jesus M de la Fuente,et al.  Nanoparticle targeting at cells. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[47]  Wolfgang J Parak,et al.  Combined atomic force microscopy and optical microscopy measurements as a method to investigate particle uptake by cells. , 2006, Small.

[48]  Christoph Alexiou,et al.  Targeting cancer cells: magnetic nanoparticles as drug carriers , 2006, European Biophysics Journal.

[49]  E. Scholar,et al.  Role of Tyrosine Kinase Inhibitors in Cancer Therapy , 2005, Journal of Pharmacology and Experimental Therapeutics.

[50]  Dieter Braun,et al.  The role of metal nanoparticles in remote release of encapsulated materials. , 2005, Nano letters.

[51]  Jinming Gao,et al.  Interactions between self-assembled polyelectrolyte shells and tumor cells. , 2005, Journal of biomedical materials research. Part A.

[52]  G. Sukhorukov,et al.  Magnetic targeting and cellular uptake of polymer microcapsules simultaneously functionalized with magnetic and luminescent nanocrystals. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[53]  Martin Fischlechner,et al.  Engineering virus functionalities on colloidal polyelectrolyte lipid composites. , 2005, Angewandte Chemie.

[54]  M. Flessner,et al.  Resistance of Tumor Interstitial Pressure to the Penetration of Intraperitoneally Delivered Antibodies into Metastatic Ovarian Tumors , 2005, Clinical Cancer Research.

[55]  A. C. Hunter,et al.  Nanomedicine: current status and future prospects , 2005, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[56]  M. Textor,et al.  Biofunctional Polyelectrolyte Multilayers and Microcapsules: Control of Non‐Specific and Bio‐Specific Protein Adsorption , 2005 .

[57]  V. Chernomordik,et al.  Real time in vivo non-invasive optical imaging using near-infrared fluorescent quantum dots1 , 2005 .

[58]  F. Marshall,et al.  In vivo molecular and cellular imaging with quantum dots. , 2005, Current opinion in biotechnology.

[59]  Benno Radt,et al.  Light-responsive polyelectrolyte/gold nanoparticle microcapsules. , 2005, The journal of physical chemistry. B.

[60]  M. D. de Villiers,et al.  Encapsulation of drug nanoparticles in self-assembled macromolecular nanoshells. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[61]  Masato Yasuhara,et al.  Quantum Dots Targeted to the Assigned Organelle in Living Cells , 2004, Microbiology and immunology.

[62]  C. Sheldon,et al.  Concurrent measurements of the free cytosolic concentrations of H+ and Na+ ions with fluorescent indicators , 2004, Pflügers Archiv.

[63]  Gleb B Sukhorukov,et al.  Remote activation of capsules containing Ag nanoparticles and IR dye by laser light. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[64]  G. Sukhorukov,et al.  pH-responsive properties of hollow polyelectrolyte microcapsules templated on various cores. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[65]  S. Veintemillas-Verdaguer,et al.  Contrast agents for MRI based on iron oxide nanoparticles prepared by laser pyrolysis , 2003 .

[66]  Christine M. Micheel,et al.  Biological applications of colloidal nanocrystals , 2003 .

[67]  D. Wirtz,et al.  Efficient active transport of gene nanocarriers to the cell nucleus , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[68]  Gero Decher,et al.  Multilayer Thin Films: Sequential Assembly of Nanocomposite Materials , 2003 .

[69]  Nikolai Gaponik,et al.  Labeling of Biocompatible Polymer Microcapsules with Near-Infrared Emitting Nanocrystals , 2003 .

[70]  J. Ottino Is a picture worth 1,000 words? , 2003, Nature.

[71]  Gero Decher,et al.  Multilayer Thin Films , 2002 .

[72]  R. Papac Origins of cancer therapy. , 2001, The Yale journal of biology and medicine.

[73]  R. Smalley Of chemistry, love and nanobots. , 2001, Scientific American.

[74]  T. Belovari,et al.  Model of interstitial pressure as a result of cyclical changes in the capillary wall fluid transport. , 2001, Medical hypotheses.

[75]  Kuang-Yow Lian,et al.  Differences in antigen recognition and cytolytic activity of CD8(+) and CD8(-) T cells that express the same antigen-specific receptor. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[76]  L. Loew,et al.  Second Harmonic Generation Properties of Fluorescent Polymer-Encapsulated Gold Nanoparticles. , 2000 .

[77]  F. Caruso,et al.  From polymeric films to nanoreactors , 1999 .

[78]  P. Schmalbrock,et al.  Paramagnetic oligonucleotides: contrast agents for magnetic resonance imaging with proton relaxation enhancement effects. , 1999, Bioconjugate chemistry.

[79]  Helmuth Möhwald,et al.  Novel Hollow Polymer Shells by Colloid-Templated Assembly of Polyelectrolytes. , 1998, Angewandte Chemie.

[80]  D. Fernig,et al.  Stimulation of proliferation in human colon cancer cells by human monoclonal antibodies against the TF antigen (galactose β1‐3 N‐acetyl‐galactosamine) , 1997, International journal of cancer.

[81]  Gero Decher,et al.  Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites , 1997 .

[82]  R. Tsien,et al.  Fluorescent indicators for Ca2+based on green fluorescent proteins and calmodulin , 1997, Nature.

[83]  H Putzar,et al.  Applications of magnetic targeting in diagnosis and therapy--possibilities and limitations: a mini-review. , 1997, Hybridoma.

[84]  Leslie G. Ungerleider,et al.  Neural correlates of category-specific knowledge , 1996, Nature.

[85]  R. J. Cohen,et al.  The law of mass action governs antigen-stimulated cytolytic activity of CD8+ cytotoxic T lymphocytes. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[86]  R K Jain,et al.  Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: significance of elevated interstitial pressure. , 1988, Cancer research.

[87]  C. Heidelberger Chemical carcinogenesis, chemotherapy: cancer's continuing core challenges--G. H. A. Clowes Memorial Lecture. , 1970, Cancer research.

[88]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[89]  G. Hitchings,et al.  THE CHEMISTRY AND BIOCHEMISTRY OF PURINE ANALOGS , 1954, Annals of the New York Academy of Sciences.

[90]  G. Hitchings,et al.  Antagonists of nucleic acid derivatives. VIII. Synergism in combinations of biochemically related antimetabolites. , 1954, The Journal of biological chemistry.

[91]  J. Wolff,et al.  Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid. , 1948, The New England journal of medicine.

[92]  Xinge Zhang,et al.  Hollow and degradable polyelectrolyte nanocapsules for protein drug delivery. , 2010, Acta biomaterialia.

[93]  M. Textor,et al.  Stable stealth function for hollow polyelectrolyte microcapsules through a poly(ethylene glycol) grafted polyelectrolyte adlayer. , 2008, Biomacromolecules.

[94]  S. Heiland,et al.  Polyamine-substituted gadolinium chelates: a new class of intracellular contrast agents for magnetic resonance imaging of tumors. , 2007, Journal of medicinal chemistry.

[95]  Sandra J Rosenthal,et al.  Labeling cell-surface proteins via antibody quantum dot streptavidin conjugates. , 2005, Methods in molecular biology.

[96]  B. Chabner,et al.  Chemotherapy and the war on cancer , 2005, Nature Reviews Cancer.

[97]  T. Mihaljevic,et al.  Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping , 2004, Nature Biotechnology.

[98]  H. Clark,et al.  Production, characteristics and applications of fluorescent PEBBLE nanosensors : Potassium, oxygen, calcium and pH imaging inside live cells : Biomedical applications , 2002 .

[99]  Andreas Voigt,et al.  pH-controlled macromolecule encapsulation in and release from polyelectrolyte multilayer nanocapsules. , 2001 .