Satellite collision probability estimation using polynomial chaos expansions
暂无分享,去创建一个
[1] Salvatore Alfano. Toroidal path filter for orbital conjunction screening , 2012 .
[2] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[3] Matthew M. Berry,et al. Implementation of Gauss-Jackson Integration for Orbit Propagation , 2004 .
[4] Salvatore Alfano. Determining satellite close approaches, part 2 , 1994 .
[5] Roger Ghanem,et al. Stochastic Finite Element Analysis for Multiphase Flow in Heterogeneous Porous Media , 1998 .
[6] R. Patera. General Method for Calculating Satellite Collision Probability , 2001 .
[7] Daniel J. Scheeres,et al. Analytical Nonlinear Propagation of Uncertainty in the Two-Body Problem , 2012 .
[8] D. Vose. Risk Analysis: A Quantitative Guide , 2000 .
[9] Donald W. Phillion,et al. Monte Carlo Method for Collision Probability Calculations Using 3D Satellite Models , 2010 .
[10] S. Alfano,et al. Satellite Conjunction Monte Carlo Analysis , 2009 .
[11] J. Jackson. Note on the Numerical Integration of $\frac{{d}^{2}x}{{dt}^{2}}=f(x,t)$ , 1924 .
[12] Salvatore Alfano,et al. Determining If Two Solid Ellipsoids Intersect , 2003 .
[13] O. L. Maître,et al. Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics , 2010 .
[14] A. Morselli,et al. Rigorous computation of orbital conjunctions , 2012 .
[15] Jing Li,et al. An efficient surrogate-based method for computing rare failure probability , 2011, J. Comput. Phys..
[16] J. Dormand,et al. High order embedded Runge-Kutta formulae , 1981 .
[17] Roger G. Ghanem,et al. Physical Systems with Random Uncertainties: Chaos Representations with Arbitrary Probability Measure , 2005, SIAM J. Sci. Comput..
[18] Russell P. Patera,et al. Satellite Collision Probability for Nonlinear Relative Motion , 2002 .
[19] Roger Ghanem,et al. Ingredients for a general purpose stochastic finite elements implementation , 1999 .
[20] Richard W. Ghrist,et al. Impact of Non-Gaussian Error Volumes on Conjunction Assessment Risk Analysis , 2012 .
[21] D. Xiu. Fast numerical methods for stochastic computations: A review , 2009 .
[22] D. Xiu,et al. Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .
[23] Linda L. Crawford,et al. An analytic method to determine future close approaches between satellites , 1984 .
[24] Kyle J. DeMars,et al. Orbit Determination Performance Improvements for High Area-to-Mass Ratio Space Object Tracking Using an Adaptive Gaussian Mixtures Estimation Algorithm , 2009 .
[25] Roger Ghanem,et al. Stochastic model reduction for chaos representations , 2007 .
[26] Frank H. Bauer,et al. PARTIALLY DECENTRALIZED CONTROL ARCHITECTURES FOR SATELLITE FORMATIONS , 2002 .
[27] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[28] Steven P. Hughes,et al. Formation Design and Sensitivity Analysis for the Magnetospheric Multiscale Mission (MMS) , 2008 .
[29] R. Ghanem,et al. Multi-resolution analysis of wiener-type uncertainty propagation schemes , 2004 .
[30] Rudolph van der Merwe,et al. The square-root unscented Kalman filter for state and parameter-estimation , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).
[31] R. Park,et al. Nonlinear Mapping of Gaussian Statistics: Theory and Applications to Spacecraft Trajectory Design , 2006 .
[32] D. Xiu. Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .
[33] Bin Jia,et al. Stochastic Collocation Method for Uncertainty Propagation , 2012 .
[34] Michèle Lavagna,et al. Nonlinear Mapping of Uncertainties in Celestial Mechanics , 2013 .
[35] B. Numerov,et al. Note on the numerical integration of d2x/dt2 = f(x, t) , 1927 .
[36] Salvatore Alfanol,et al. A Numerical Implementation of Spherical Object Collision Probability , 2005 .
[37] G. Karniadakis,et al. An adaptive multi-element generalized polynomial chaos method for stochastic differential equations , 2005 .
[38] James Agi Woodburn. A Description of Filters for Minimizing the Time Required for Orbital Conjunction Computations , 2009 .
[39] John Red-Horse,et al. Propagation of probabilistic uncertainty in complex physical systems using a stochastic finite element approach , 1999 .
[40] Salvatore Alfano. Addressing Nonlinear Relative Motion For Spacecraft Collision Probability , 2006 .
[41] Chris Sabol,et al. Linearized Orbit Covariance Generation and Propagation Analysis via Simple Monte Carlo Simulations (Preprint) , 2010 .
[42] S. A. Curtis,et al. Magnetospheric Multiscale Mission , 2005 .
[43] A. Doostan,et al. Nonlinear Propagation of Orbit Uncertainty Using Non-Intrusive Polynomial Chaos , 2013 .
[44] Gianluca Iaccarino,et al. A least-squares approximation of partial differential equations with high-dimensional random inputs , 2009, J. Comput. Phys..
[45] Houman Owhadi,et al. A non-adapted sparse approximation of PDEs with stochastic inputs , 2010, J. Comput. Phys..
[46] Jing Li,et al. Evaluation of failure probability via surrogate models , 2010, J. Comput. Phys..
[47] Deok-Jin Lee,et al. Probability of Collision Error Analysis , 1999 .
[48] James Woodburn,et al. Determination of Close Approaches for Constellations of Satellites , 1998 .
[49] Puneet Singla,et al. A Hierarchical Tree Code Based Approach for Ecient Conjunction Analysis , 2012 .
[50] Raúl Tempone,et al. Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..
[51] G. Iaccarino,et al. Non-intrusive low-rank separated approximation of high-dimensional stochastic models , 2012, 1210.1532.
[52] Salvatore Alfano,et al. Determining satellite close approaches , 1992 .
[53] F. Landis Markley,et al. Sequential Probability Ratio Test for Collision Avoidance Maneuver Decisions , 2011 .
[54] Ken Chan. Short-Term vs. Long-Term Spacecraft Encounters , 2004 .
[55] Aubrey B. Poore,et al. Gaussian Sum Filters for Space Surveillance: Theory and Simulations , 2011 .
[56] N. Wiener. The Homogeneous Chaos , 1938 .
[57] Brandon A. Jones,et al. Comparisons of the Cubed-Sphere Gravity Model with the Spherical Harmonics , 2010 .