Prediction-based Online Trajectory Compression

Recent spatio-temporal data applications, such as car-shar\-ing and smart cities, impose new challenges regarding the scalability and timeliness of data processing systems. Trajectory compression is a promising approach for scaling up spatio-temporal databases. However, existing techniques fail to address the online setting, in which a compressed version of a trajectory stream has to be maintained over time. In this paper, we introduce ONTRAC, a new framework for map-matched online trajectory compression. ONTRAC learns prediction models for suppressing updates to a trajectory database using training data. Two prediction schemes are proposed, one for road segments via a Markov model and another for travel-times by combining Quadratic Programming and Expectation Maximization. Experiments show that ONTRAC outperforms the state-of-the-art offline technique even when long update delays (4 mininutes) are allowed and achieves up to 21 times higher compression ratio for travel-times. Moreover, our approach increases database scalability by up to one order of magnitude.

[1]  Dieter Pfoser,et al.  On Map-Matching Vehicle Tracking Data , 2005, VLDB.

[2]  Christian S. Jensen,et al.  Towards Total Traffic Awareness , 2014, SGMD.

[3]  Ian H. Witten,et al.  Data Compression Using Adaptive Coding and Partial String Matching , 1984, IEEE Trans. Commun..

[4]  Geoffrey E. Hinton,et al.  A View of the Em Algorithm that Justifies Incremental, Sparse, and other Variants , 1998, Learning in Graphical Models.

[5]  Weiwei Sun,et al.  PRESS: A Novel Framework of Trajectory Compression in Road Networks , 2014, Proc. VLDB Endow..

[6]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[7]  Guangzhong Sun,et al.  Driving with knowledge from the physical world , 2011, KDD.

[8]  Ran El-Yaniv,et al.  On Prediction Using Variable Order Markov Models , 2004, J. Artif. Intell. Res..

[9]  Zhi-Hua Zhou,et al.  Proofs of the Theorems , 2010 .

[10]  P. Abbeel,et al.  Path and travel time inference from GPS probe vehicle data , 2009 .

[11]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[12]  Sriram Raghavan,et al.  Inferring Uncertain Trajectories from Partial Observations , 2014, 2014 IEEE International Conference on Data Mining.

[13]  Yu Zheng,et al.  Travel time estimation of a path using sparse trajectories , 2014, KDD.

[14]  Patrick Jaillet,et al.  An HMM-based map matching method with cumulative proximity-weight formulation , 2013, 2013 International Conference on Connected Vehicles and Expo (ICCVE).

[15]  N. Reid,et al.  Likelihood , 1993 .

[16]  Albert-László Barabási,et al.  Understanding individual human mobility patterns , 2008, Nature.

[17]  Christian S. Jensen,et al.  Travel Cost Inference from Sparse, Spatio-Temporally Correlated Time Series Using Markov Models , 2013, Proc. VLDB Endow..

[18]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[19]  Ziqi Liao,et al.  Real-time taxi dispatching using Global Positioning Systems , 2003, CACM.

[20]  Masashi Sugiyama,et al.  Trajectory Regression on Road Networks , 2011, AAAI.

[21]  Jong-Dae Kim,et al.  Path Prediction of Moving Objects on Road Networks Through Analyzing Past Trajectories , 2007, KES.

[22]  F. Gustafsson,et al.  Mobile positioning using wireless networks: possibilities and fundamental limitations based on available wireless network measurements , 2005, IEEE Signal Processing Magazine.

[23]  Abdeltawab M. Hendawi,et al.  Predictive tree: An efficient index for predictive queries on road networks , 2015, 2015 IEEE 31st International Conference on Data Engineering.

[24]  Xing Xie,et al.  Destination prediction by sub-trajectory synthesis and privacy protection against such prediction , 2013, 2013 IEEE 29th International Conference on Data Engineering (ICDE).

[25]  Nikos Pelekis,et al.  Map-matched trajectory compression , 2013, J. Syst. Softw..

[26]  Matthias Grossglauser,et al.  A parsimonious model of mobile partitioned networks with clustering , 2009, 2009 First International Communication Systems and Networks and Workshops.

[27]  Ouri Wolfson,et al.  Nonmaterialized Motion Information in Transport Networks , 2005, ICDT.

[28]  Christian S. Jensen,et al.  iPark: identifying parking spaces from trajectories , 2013, EDBT '13.

[29]  Neri Merhav,et al.  Relations between entropy and error probability , 1994, IEEE Trans. Inf. Theory.