Shortcuts to adiabatic holonomic quantum computation in decoherence-free subspace with transitionless quantum driving algorithm

By using transitionless quantum driving algorithm (TQDA), we present an efficient scheme for the shortcuts to the holonomic quantum computation (HQC). It works in decoherence-free subspace (DFS) and the adiabatic process can be speeded up in the shortest possible time. More interestingly, we give a physical implementation for our shortcuts to HQC with nitrogen-vacancy centers in diamonds dispersively coupled to a whispering-gallery mode microsphere cavity. It can be efficiently realized by controlling appropriately the frequencies of the external laser pulses. Also, our scheme has good scalability with more qubits. Different from previous works, we first use TQDA to realize a universal HQC in DFS, including not only two noncommuting accelerated single-qubit holonomic gates but also a accelerated two-qubit holonomic controlled-phase gate, which provides the necessary shortcuts for the complete set of gates required for universal quantum computation. Moreover, our experimentally realizable shortcuts require only two-body interactions, not four-body ones, and they work in the dispersive regime, which relax greatly the difficulty of their physical implementation in experiment. Our numerical calculations show that the present scheme is robust against decoherence with current experimental parameters.

[1]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[2]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[3]  P. Zanardi,et al.  Noiseless Quantum Codes , 1997, quant-ph/9705044.

[4]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.

[5]  G. Guo,et al.  Reducing decoherence in quantum-computer memory with all quantum bits coupling to the same environment , 1996, quant-ph/9612003.

[6]  H. Mabuchi,et al.  High-Q measurements of fused-silica microspheres in the near infrared. , 1998, Optics letters.

[7]  Paolo Zanardi,et al.  Holonomic quantum computation , 1999 .

[8]  Paolo Zanardi,et al.  Non-Abelian Berry connections for quantum computation , 1999 .

[9]  A. G. White,et al.  Experimental verification of decoherence-free subspaces. , 2000, Science.

[10]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[11]  J I Cirac,et al.  Geometric Manipulation of Trapped Ions for Quantum Computation , 2001, Science.

[12]  Shi-Liang Zhu,et al.  Implementation of universal quantum gates based on nonadiabatic geometric phases. , 2002, Physical review letters.

[13]  D. Gammon,et al.  An All-Optical Quantum Gate in a Semiconductor Quantum Dot , 2003, Science.

[14]  T. J. Kippenberg,et al.  Ultra-high-Q toroid microcavity on a chip , 2003, Nature.

[15]  Shi-Liang Zhu,et al.  Unconventional geometric quantum computation. , 2003, Physical Review Letters.

[16]  K J Resch,et al.  Experimental application of decoherence-free subspaces in an optical quantum-computing algorithm. , 2003, Physical review letters.

[17]  Stuart A. Rice,et al.  Adiabatic Population Transfer with Control Fields , 2003 .

[18]  Daniel A Lidar,et al.  Magnetic resonance realization of decoherence-free quantum computation. , 2003, Physical review letters.

[19]  Shi-Biao Zheng Unconventional geometric quantum phase gates with a cavity QED system (4 pages) , 2004 .

[20]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[21]  S. Spillane,et al.  Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics (10 pages) , 2004, quant-ph/0410218.

[22]  D A Lidar,et al.  Holonomic quantum computation in decoherence-free subspaces. , 2005, Physical review letters.

[23]  Stuart A Rice,et al.  Assisted adiabatic passage revisited. , 2005, The journal of physical chemistry. B.

[24]  D. D. Awschalom,et al.  Room-temperature manipulation and decoherence of a single spin in diamond , 2006, quant-ph/0608233.

[25]  Li-Xiang Cen,et al.  Scalable quantum computation in decoherence-free subspaces with trapped ions , 2006, quant-ph/0603222.

[26]  P Hemmer,et al.  Stark shift control of single optical centers in diamond. , 2006, Physical Review Letters.

[27]  Z. D. Wang,et al.  Physical implementation of holonomic quantum computation in decoherence-free subspaces with trapped ions , 2006 .

[28]  Philip Hemmer,et al.  Coherent population trapping of single spins in diamond under optical excitation. , 2006, Physical review letters.

[29]  L. Childress,et al.  Supporting Online Material for , 2006 .

[30]  Young-Shin Park,et al.  Cavity QED with diamond nanocrystals and silica microspheres. , 2006, Nano letters.

[31]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[32]  P. Hemmer,et al.  Temporal coherence of photons emitted by single nitrogen-vacancy defect centers in diamond using optical Rabi-oscillations. , 2008, Physical review letters.

[33]  G. Balasubramanian,et al.  Excited-state spectroscopy of single NV defects in diamond using optically detected magnetic resonance , 2008, 0807.2379.

[34]  J. Wrachtrup,et al.  Coherence of single spins coupled to a nuclear spin bath of varying density , 2008, 0811.4731.

[35]  Hui Sun,et al.  Geometric entangling gates in decoherence-free subspaces with minimal requirements. , 2009, Physical review letters.

[36]  Daniel A Lidar,et al.  Fault-tolerant holonomic quantum computation. , 2009, Physical review letters.

[37]  Thomas G. Walker,et al.  Quantum information with Rydberg atoms , 2009, 0909.4777.

[38]  J. G. Muga,et al.  Shortcut to adiabatic passage in two- and three-level atoms. , 2010, Physical review letters.

[39]  D. M. Tong,et al.  Non-adiabatic holonomic quantum computation , 2011, 1107.5127.

[40]  Erik Sjöqvist,et al.  Nonadiabatic holonomic quantum computation in decoherence-free subspaces. , 2012, Physical review letters.

[41]  A Faraon,et al.  Dynamic stabilization of the optical resonances of single nitrogen-vacancy centers in diamond. , 2011, Physical review letters.

[42]  Riccardo Mannella,et al.  High-fidelity quantum driving , 2011, Nature Physics.

[43]  Vahid Azimi Mousolou,et al.  Universal non-adiabatic holonomic gates in quantum dots and single-molecule magnets , 2012, 1209.3645.

[44]  Guilu Long,et al.  Experimental realization of nonadiabatic holonomic quantum computation. , 2013, Physical review letters.

[45]  Dieter Suter,et al.  Experimental implementation of assisted quantum adiabatic passage in a single spin. , 2012, Physical review letters.

[46]  Fu-Guo Deng,et al.  Compact quantum gates on electron-spin qubits assisted by diamond nitrogen-vacancy centers inside cavities , 2013, 1310.0197.

[47]  E. Sjoqvist,et al.  Validity of the rotating-wave approximation in nonadiabatic holonomic quantum computation , 2013, 1307.1536.

[48]  D Budker,et al.  Solid-state electronic spin coherence time approaching one second , 2012, Nature Communications.

[49]  P. Schmitteckert,et al.  Adiabatic tracking of a state: a new route to nonequilibrium physics. , 2013, Physical Review Letters.

[50]  A. Campo,et al.  Shortcuts to adiabaticity by counterdiabatic driving. , 2013, Physical review letters.

[51]  S. Berger,et al.  Experimental realization of non-Abelian non-adiabatic geometric gates , 2013, Nature.

[52]  Guilu Long,et al.  Protecting geometric gates by dynamical decoupling , 2014 .

[53]  Hui Yan,et al.  Nonadiabatic holonomic quantum computation in decoherence-free subspaces with trapped ions , 2014 .

[54]  Fu-Guo Deng,et al.  Hyper-parallel photonic quantum computation with coupled quantum dots , 2013, Scientific Reports.

[55]  P. Zanardi,et al.  Quantum computation in noiseless subsystems with fast non-Abelian holonomies , 2013, 1308.1919.

[56]  Guilu Long,et al.  Universal Nonadiabatic Geometric Gates in Two-Qubit Decoherence-Free Subspaces , 2014, Scientific reports.

[57]  C. Zu,et al.  Experimental realization of universal geometric quantum gates with solid-state spins , 2014, Nature.

[58]  Stefan W. Hell,et al.  Room temperature high-fidelity holonomic single-qubit gate on a solid-state spin , 2014, Nature Communications.

[59]  Ennio Arimondo,et al.  Three-level superadiabatic quantum driving , 2014 .

[60]  Zheng-Yuan Xue,et al.  Cavity QED implementation of non-adiabatic holonomies for universal quantum gates in decoherence-free subspaces with nitrogen-vacancy centers. , 2015, Optics express.

[61]  D. M. Tong,et al.  Fast non-Abelian geometric gates via transitionless quantum driving , 2014, Scientific Reports.

[62]  Fu-Guo Deng,et al.  Universal hyperparallel hybrid photonic quantum gates with dipole-induced transparency in the weak-coupling regime , 2014, 1411.0274.

[63]  Z. D. Wang,et al.  Universal Holonomic Quantum Gates in Decoherence-free Subspace on Superconducting Circuits , 2015 .

[64]  Qian Liu,et al.  Generation and complete nondestructive analysis of hyperentanglement assisted by nitrogen-vacancy centers in resonators , 2015, 1507.06108.