Towards computable flows and robust estimates for inf-sup stable FEM applied to the time-dependent incompressible Navier–Stokes equations

Inf-sup stable FEM applied to time-dependent incompressible Navier–Stokes flows are considered. The focus lies on robust estimates for the kinetic and dissipation energies in a twofold sense. Firstly, pressure–robustness ensures the fulfilment of a fundamental invariance principle and velocity error estimates are not corrupted by the pressure approximability. Secondly, Re-semi-robustness means that constants appearing on the right-hand side of kinetic and dissipation energy error estimates (including Gronwall constants) do not explicitly depend on the Reynolds number. Such estimates rely on the essential regularity assumption $$\nabla u \in L^1(0,T;L^\infty (\varOmega ))$$∇u∈L1(0,T;L∞(Ω)) which is discussed in detail. In the sense of best practice, we review and establish pressure- and Re-semi-robust estimates for pointwise divergence-free $$H^1$$H1-conforming FEM (like Scott–Vogelius pairs or certain isogeometric based FEM) and pointwise divergence-free H(div)-conforming discontinuous Galerkin FEM. For convection-dominated problems, the latter naturally includes an upwind stabilisation for the velocity which is not gradient-based.

[1]  Roger Lewandowski,et al.  Mathematical and Numerical Foundations of Turbulence Models and Applications , 2014 .

[2]  Gert Lube,et al.  Divergence-Free H(div)-FEM for Time-Dependent Incompressible Flows with Applications to High Reynolds Number Vortex Dynamics , 2017, Journal of Scientific Computing.

[3]  Leo G. Rebholz,et al.  A Connection Between Scott-Vogelius and Grad-Div Stabilized Taylor-Hood FE Approximations of the Navier-Stokes Equations , 2011, SIAM J. Numer. Anal..

[4]  John A. Evans Divergence-free B-spline discretizations for viscous incompressible flows , 2011 .

[5]  Alexander Linke,et al.  Pressure-robustness and discrete Helmholtz projectors in mixed finite element methods for the incompressible Navier--Stokes equations , 2016 .

[6]  Volker John,et al.  Finite elements for scalar convection-dominated equations and incompressible flow problems: a never ending story? , 2018, Comput. Vis. Sci..

[7]  Volker John,et al.  Finite Element Methods for Incompressible Flow Problems , 2016 .

[8]  Bernardo Cockburn Two new techniques for generating exactly incompressible approximate velocities , 2009 .

[9]  Colin J. Cotter,et al.  A variational $\boldsymbol{H}({\rm div})$ finite-element discretization approach for perfect incompressible fluids , 2016, 1606.06199.

[10]  Yuri Bazilevs,et al.  Benchmark problems for numerical treatment of backflow at open boundaries , 2018, International journal for numerical methods in biomedical engineering.

[11]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[12]  Daniel Arndt,et al.  Finite Elements for the Navier-Stokes Problem with Outflow Condition , 2015, ENUMATH.

[13]  Steven J. Ruuth,et al.  Implicit-explicit methods for time-dependent partial differential equations , 1995 .

[14]  Bernardo Cockburn,et al.  Incompressible Finite Elements via Hybridization. Part I: The Stokes System in Two Space Dimensions , 2005, SIAM J. Numer. Anal..

[15]  L. Berselli,et al.  Mathematics of Large Eddy Simulation of Turbulent Flows , 2005 .

[16]  Béatrice Rivière,et al.  Discontinuous Galerkin methods for solving elliptic and parabolic equations - theory and implementation , 2008, Frontiers in applied mathematics.

[17]  Gert Lube,et al.  Pressure-robust analysis of divergence-free and conforming FEM for evolutionary incompressible Navier–Stokes flows , 2016, J. Num. Math..

[18]  Raytcho D. Lazarov,et al.  Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..

[19]  H. Kreiss,et al.  Smallest scale estimates for the Navier-Stokes equations for incompressible fluids , 1990 .

[20]  Daniel Arndt,et al.  Stabilized Finite Element Methods for the Oberbeck–Boussinesq Model , 2016, J. Sci. Comput..

[21]  Edriss S. Titi,et al.  Mathematics and turbulence: where do we stand? , 2013, 1301.0273.

[22]  Issei Oikawa,et al.  A Hybridized Discontinuous Galerkin Method with Reduced Stabilization , 2014, Journal of Scientific Computing.

[23]  Joachim Schoberl,et al.  Polynomial robust stability analysis for $H(\textrm{div})$-conforming finite elements for the Stokes equations , 2016, 1612.01482.

[24]  Andrew J. Majda,et al.  Vorticity and Incompressible Flow: Index , 2001 .

[25]  Volker John,et al.  On the Divergence Constraint in Mixed Finite Element Methods for Incompressible Flows , 2015, SIAM Rev..

[26]  Bernardo Cockburn,et al.  Incompressible Finite Elements via Hybridization. Part II: The Stokes System in Three Space Dimensions , 2005, SIAM J. Numer. Anal..

[27]  PHILIP L. LEDERER,et al.  Divergence-free Reconstruction Operators for Pressure-Robust Stokes Discretizations with Continuous Pressure Finite Elements , 2016, SIAM J. Numer. Anal..

[28]  Franck Boyer,et al.  Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models , 2012 .

[29]  J. Schöberl C++11 Implementation of Finite Elements in NGSolve , 2014 .

[30]  Chi-Wang Shu,et al.  H(div) conforming and DG methods for incompressible Euler’s equations , 2016 .

[31]  Klaus Gersten,et al.  Boundary-Layer Theory - 8th Revised and Enlarged Edition , 2000 .

[32]  Gunar Matthies,et al.  Robust arbitrary order mixed finite element methods for the incompressible Stokes equations , 2014 .

[33]  Colin J. Cotter,et al.  Corrigendum to: A variational $\boldsymbol{H}({\rm div})$ finite-element discretization approach for perfect incompressible fluids , 2017 .

[34]  Giancarlo Sangalli,et al.  IsoGeometric Analysis: Stable elements for the 2D Stokes equation , 2011 .

[35]  Volker John,et al.  Analysis of the grad-div stabilization for the time-dependent Navier–Stokes equations with inf-sup stable finite elements , 2016, Adv. Comput. Math..

[36]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[37]  Volker John,et al.  Semi-robust Local Projection Stabilization for Non Inf-sup Stable Discretizations of the Evolutionary Navier-Stokes Equations , 2017 .

[38]  A. Ern,et al.  Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .

[39]  M. Stynes,et al.  Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problems , 1996 .

[40]  Sander Rhebergen,et al.  A Hybridizable Discontinuous Galerkin Method for the Navier–Stokes Equations with Pointwise Divergence-Free Velocity Field , 2017, Journal of Scientific Computing.

[41]  Miguel A. Fernández,et al.  Continuous interior penalty finite element method for the time-dependent Navier–Stokes equations: space discretization and convergence , 2007, Numerische Mathematik.

[42]  Daniel Arndt,et al.  Understanding the Limits of Inf-Sup Stable Galerkin-FEM for Incompressible Flows , 2015 .

[43]  D. Tritton,et al.  Physical Fluid Dynamics , 1977 .

[44]  Sander Rhebergen,et al.  Analysis of a Hybridized/Interface Stabilized Finite Element Method for the Stokes Equations , 2016, SIAM J. Numer. Anal..

[45]  Bernardo Cockburn,et al.  The Derivation of Hybridizable Discontinuous Galerkin Methods for Stokes Flow , 2009, SIAM J. Numer. Anal..

[46]  John A. Evans,et al.  ISOGEOMETRIC DIVERGENCE-CONFORMING B-SPLINES FOR THE STEADY NAVIER–STOKES EQUATIONS , 2013 .

[47]  Ricardo H. Nochetto,et al.  Max-norm estimates for Stokes and Navier–Stokes approximations in convex polyhedra , 2015, Numerische Mathematik.

[48]  J. Schöberl,et al.  High order Nédélec elements with local complete sequence properties , 2005 .

[49]  Alexander Linke,et al.  On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime , 2014 .

[50]  Thomas J. R. Hughes,et al.  Isogeometric divergence-conforming B-splines for the unsteady Navier-Stokes equations , 2013, J. Comput. Phys..

[51]  Andrea L. Bertozzi,et al.  Heteroclinic orbits and chaotic dynamics in planar fluid flows , 1988 .

[52]  Franz Durst,et al.  Fluid Mechanics: An Introduction to the Theory of Fluid Flows , 2008 .

[53]  David Sondak,et al.  A residual based eddy viscosity model for the large eddy simulation of turbulent flows , 2014 .

[54]  Steven J. Ruuth,et al.  Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .

[55]  Alexander Linke,et al.  On velocity errors due to irrotational forces in the Navier-Stokes momentum balance , 2016, J. Comput. Phys..

[56]  Erik Burman,et al.  Robust error estimates for stabilized finite element approximations of the two dimensional Navier–Stokes’ equations at high Reynolds number , 2015 .

[57]  Volker John,et al.  On the parameter choice in grad-div stabilization for the Stokes equations , 2014, Adv. Comput. Math..

[58]  Christoph Lehrenfeld,et al.  High order exactly divergence-free Hybrid Discontinuous Galerkin Methods for unsteady incompressible flows , 2015, ArXiv.

[59]  Bernardo Cockburn,et al.  Static Condensation, Hybridization, and the Devising of the HDG Methods , 2016 .

[60]  L. Hou,et al.  Analysis and approximations of the evolutionary Stokes equations with inhomogeneous boundary and divergence data using a parabolic saddle point formulation , 2017 .

[61]  Christoph Lehrenfeld,et al.  Hybrid Discontinuous Galerkin Methods with Relaxed H(div)-Conformity for Incompressible Flows. Part I , 2018, SIAM J. Numer. Anal..

[62]  Daniel Arndt,et al.  Local projection FEM stabilization for the time‐dependent incompressible Navier–Stokes problem , 2015 .

[63]  Issei Oikawa,et al.  Analysis of a Reduced-Order HDG Method for the Stokes Equations , 2015, J. Sci. Comput..

[64]  Guido Kanschat,et al.  A Note on Discontinuous Galerkin Divergence-free Solutions of the Navier–Stokes Equations , 2007, J. Sci. Comput..

[65]  Leo G. Rebholz,et al.  Efficient linear solvers for incompressible flow simulations using Scott‐Vogelius finite elements , 2013 .

[66]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[67]  H. Schlichting Boundary Layer Theory , 1955 .